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Abstract The West Nile virus (WNV) infections are

generally asymptomatic and are considered as immediate

concerns of biodefense due to the lack of any therapeutic

remedies. In this work, we created an interaction network

of 1159 differentially expressed genes to detect potential

hub genes from WNV infected primary human macro-

phages. We go on to explore the genetic variations that can

alter the expression and function of identified hub genes

(HCLS1, SLC15A3, HCK, and LY96) using the PROVEAN

Protein Batch tool and PolyPhen-2. Community analysis of

the network revealed that these clusters were enriched in

GO terms such as inflammatory response and regulation of

proliferation. Analysis of hub genes can aid in determining

their degree of conservation and may help us in under-

standing their functional roles in biological systems. The

nsSNPs proposed in this work may be further targeted

through experimental methods for improving treatment

towards the infection of WNV.

Keywords West Nile virus � Infection � Interaction
network � Hub genes � Community analysis � nsSNPs

Introduction

West Nile virus (WNV) is a mosquito-borne neurotropic

viruses and belongs to a member of Japanese encephalitis

virus (JEV) serogroup in the family Flaviviridae (Heinz

et al. 2000), which comprises viruses for yellow fever and

dengue (Brinton 2002). Originally first detected in Uganda,

it has been endemically spreading in various regions across

the world, including the Middle East, some regions of

Africa, Europe and United States at different periods

(Suthar et al. 2013). However, serologically it was first

tested in Assam, India in 2006 (Chowdhury et al. 2014).

Belonging to the Flaviviridae family, it is encoded by a

*11 kb positive-sense, single-stranded RNA (ssRNA)

genome (Suthar et al. 2013). It follows a replication life

cycle, which is involved in binding to cell surface receptor,

leading to fusion with the membrane and final delivery of

infectious RNA genome into the cytoplasm (Suthar et al.

2013). The genome injected is further translated as a single

polyprotein, which undergoes subsequent cleavage by viral

and host proteases to generate structural and non-structural

proteins. The structural proteins form the virion encapsi-

dating the viral RNA, whereas, the non-structural proteins

form the replication complex, which synthesize the nega-

tive- and positive-sense viral RNA. Hence, targeting the

replication pathway and primarily the infectious genome

can aid in curbing the expression of WNV (Suthar et al.
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2013). Additionally, targeting at gene level will also

enhance the effectiveness of therapy involved. Identifica-

tion of the prime regions of interest and further the can-

didate genes for gene therapy can be determined via RNA

sequencing (RNA-Seq) methods (Mercer et al. 2014).

The RNA-Seq method comprises of the direct

sequencing of cDNA for monitoring quantitative gene

expression (Nagalakshmi et al. 2010). It involves direct

sequencing of cDNAs using high-throughput DNA

sequencing technologies followed by mapping of reads to

the reference genome (Nagalakshmi et al. 2010). The

methodology allows identifications of introns and exons

and further helps in recognizing intronic and exonic

boundaries and boundary ends of the gene of interest

(Nagalakshmi et al. 2010). RNA-Seq is presently suggested

as cost-effective new tool, which can be applied for deci-

phering the genetic basis of diseases, and traits that could

not be detected based on previous conventional gene-dis-

covery methods (Bamshad et al. 2011). RNA-Seq has been

employed to investigate biological phenomena in diverse

areas such as viral infections (Jones et al. 2014), cancer

(Young et al. 2014) and cardiomyopathy (Christodoulou

et al. 2014). Recently, we have also used RNA-Seq anal-

ysis to explore the role of glycogenes in skeletal muscle

development in MYOGkd cells (Lee et al. 2014) and also

used precomputed expression values from mouse RNA-Seq

data to understand the role glycogenes in various biological

processes that are involved in the development of brain,

muscle, and liver tissues (Firoz et al. 2014).

RNA-Seq has also been applied to identify 1514 dif-

ferentially expressed (DE) transcripts from primary human

macrophages, in response to infection with WNV (Qian

et al. 2013). In vivo studies of WNV infection using high-

throughput digital gene expression analysis have reported

common genes that are differentially expressed in multiple

tissues upon WNV infections as well as genes that are

differentially expressed in specific tissues following WNV

infection (Peña et al. 2014). These studies have helped in

developing a framework that can aid in the discovery of

genes and their associated biological functions and in turn,

decipher their impact on causing such infectious diseases.

Therefore, in this work, we have performed a network

analysis to identify the key hubs from the list of candidates

differentially expressed transcripts that were recently

detected from RNA-Seq analysis of primary human mac-

rophages infected with WNV (Qian et al. 2013). We also

explored the Single Nucleotide Polymorphisms (SNPs)

within these potential hubs that can be suggested as the

prime regions for susceptibility towards WNV infection.

Additionally, we also explored functionally important

modules in the network of WNV infected DE genes by

using community analysis. The regions suggested in this

study can be further targeted via experimental therapeutic

technologies like gene knockout technique, gene targeting,

etc., for developing treatment towards suppressing the

pathogenic action of WNV.

Materials and methods

Datasets

In this work, 1514 differentially expressed (DE) transcripts

were used for our computational analysis and were down-

loaded from a recent study on WNV infected macrophages

(Qian et al. 2013). These DE transcripts represent the RNA-

Seq analysis originally carried out byQian et al. (2013) using

Illumina Genome Analyzer 2 and expression levels for each

transcript estimated by using maximum likelihood based

method employed in the Cufflinks program (Trapnell et al.

2010). The dataset was filtered by removing any duplicate

transcripts and represent the final set of differentially

expressed genes (DEGs) used in this study.

Network analysis

GeneMANIA [www.genemania.org/] cytoscape plugin

(Montojo et al. 2010) was utilized to determine the func-

tional interactions between DEGs based on the GO term

‘‘biological process’’ and Homo sapiens as reference spe-

cies. The predicted relationships between the genes in the

network comprises of co-expression, physical and genetic

interactions, pathways, co-localization, protein domain

similarity, and predicted interactions.

Identification of hub genes

Biological networks exhibit the scale-free property (Albert

2005) with hubs representing nodes with many connections

in the network. NetworkAnalyzer plugin of Cytoscape

(Smoot et al. 2011) was utilized to determine the hubs by

calculating the values of the node degree distribution.

Three genes with highest node degree distribution were

identified as hubs in the current network.

Community analysis

The modules with functional property were determined by

applying greedy community-structure detection algorithm

via GLay [http://brainarray.mbni.med.umich.edu/sugang/

glay] (Su et al. 2010) plugin inCytoscape. For identifying the

over-represented biological functions within each cluster,

the clusters were subjected to a functional enrichment

analysis by focusing only on communities with at least 10

nodes. The functional enrichment analysis was carried out

using the DAVID functional analysis tool.
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Computational analysis of non-synonymous SNPs

(nsSNPs) of predicted hub genes

Data mining the SNP information for hub genes identified

in humans in this study were retrieved from National

Centre for Biotechnology Information (NCBI) database

dbSNP [http://www.ncbi.nlm.nih.gov/projects/SNP]. Three

different programs were used to predict the damaged or

deleterious coding nsSNPs.

Prediction of deleterious or damaging coding

nsSNPs using the PROVEAN protein batch tool

The PROVEAN Protein Batch tool [http://provean.jcvi.org/

index.php] was used to provide PROVEAN (Protein

Variation Effect Analyzer) and SIFT (Sorting Intolerant

From Tolerant) predictions for a list of protein variants.

Both PROVEAN and SIFT are software tools that predict

whether an amino acid substitution has an impact on the

biological function of a protein if the score, lies below a

certain threshold value. In PROVEAN, the clustering of

BLAST hits is carried out, and the best 30 clusters of

closely linked sequences of the supporting sequence set

that is further employed to make the predictions. For every

supporting sequence, a delta alignment score is computed

and then averaged within and across clusters generating a

final PROVEAN score (Choi et al. 2012). A default score

threshold of -2.5 or above is considered deleterious

whereas anything less than this cut-off score has a neutral

effect. On the other hand, SIFT is a multi-step algorithm

and uses sequence homology based method to classify

amino acid substitutions (Kumar et al. 2009). The PRO-

VEAN Protein Batch tool accepts a list of protein sequence

variants as input for the predictions.

Prediction of functional modification of coding

nsSNPs by polymorphism phenotyping v2

(PolyPhen-2)

PolyPhen-2 [http://genetics.bwh.harvard.edu/pph2/] tool

was used to study the possible consequence of nsSNPs on

protein structure and function. The web server predicts the

potential effect of amino acid substitution on the stability

and function of human proteins by employing structural as

well as comparative evolutionary considerations. For each

specified amino acid residue substitution in a protein,

PolyPhen-2 mines a variety of sequence and structural

characteristics of the replacement position and supplies

them to a probabilistic classifier. For this work, we have

used the provided batch query option and selected the

default advance option for generating the predictions

(Adzhubei et al. 2010).

Results

We downloaded a list of 1514 transcripts that were deter-

mined to be differentially expressed between control

unaffected and WNV-infected samples (Qian et al. 2013).

The data were further filtered by removing any duplicate

transcripts so that each transcript represents a unique DEG.

As a result, a non-redundant set of 1159 DEGs was

Fig. 1 Flowchart showing the

overall methodology

implemented in this study
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obtained that consisted of 253 down-regulated and 906 up-

regulated genes (Supplementary Table S1). The complete

workflow of computational methodology adopted in this

study is diagrammatically represented in (Fig. 1).

Network construction and identification of hub

genes

How DEGs interact with each other and additional related

genes in the network was investigated by GeneMANIA

Cytoscape plugin (Montojo et al. 2010). A GeneMANIA

network analysis of DEGs points to enrichment of signal-

ing pathways such as cytokine-mediated and type I inter-

feron-mediated signaling pathways. The other over-

represented GO terms includes inflammatory response,

regulation of leukocyte and lymphocyte activation, and

regulation of cell activation (Table 1).

The interaction network deduced via GeneMANIA was

further analyzed in Cytoscape 2.8.2 (Smoot et al. 2011).

The initial network comprising of 952 nodes and 48,263

edges was filtered to 952 nodes and 44,785 edges by

removing duplicate edges. All the genes in the network are

represented by circles and the interactions between them

are represented as edges. The up-regulated genes are shown

in green whereas; red nodes represent down-regulated

genes. Moreover, the additional related genes predicted by

GeneMANIA are shown in cyan (Fig. 2).

The genes determined as hubs with high node degree

distribution encode, HCLS1 (Hematopoietic lineage cell-

specific protein or Hematopoietic cell-specific LYN sub-

strate 1), (Supplementary Fig. 1a) a top hub with the node

degree of 342 whereas, SLC15A3 (Solute carrier family 15

member 3) (Supplementary Fig. 1b) was the second hub

having a node degree of 323. The genes with third highest

node degree are represented by HCK (Tyrosine-protein

Table 1 Top 30 significantly

enriched gene ontology (GO)

terms detected by GeneMANIA

for differentially expressed

genes and additional related

genes

GO ID Description Q-value

GO:0019221 Cytokine-mediated signaling pathway 1.55E-39

GO:0060337 Type I interferon-mediated signaling pathway 3.75E-30

GO:0071357 Cellular response to type I interferon 3.75E-30

GO:0034340 Response to type I interferon 4.83E-30

GO:0034341 Response to interferon-gamma 4.83E-30

GO:0071346 Cellular response to interferon-gamma 6.73E-27

GO:0060333 Interferon-gamma-mediated signaling pathway 1.85E-23

GO:0051707 Response to other organism 3.10E-21

GO:0009607 Response to biotic stimulus 1.00E-20

GO:0001817 Regulation of cytokine production 1.00E-20

GO:0031347 Regulation of defense response 2.62E-20

GO:0001816 Cytokine production 7.21E-20

GO:0006954 Inflammatory response 7.52E-17

GO:0002694 Regulation of leukocyte activation 7.96E-17

GO:0050865 Regulation of cell activation 7.96E-17

GO:0051249 Regulation of lymphocyte activation 1.85E-16

GO:0046649 Lymphocyte activation 1.18E-15

GO:0045088 Regulation of innate immune response 3.63E-15

GO:0002252 Immune effector process 4.69E-15

GO:0050867 Positive regulation of cell activation 4.69E-15

GO:0002696 Positive regulation of leukocyte activation 8.86E-15

GO:0009615 Response to virus 2.20E-14

GO:0051251 Positive regulation of lymphocyte activation 2.68E-14

GO:0042110 T cell activation 3.73E-14

GO:0050778 Positive regulation of immune response 3.37E-13

GO:0031349 Positive regulation of defense response 5.70E-13

GO:0050863 Regulation of T cell activation 1.76E-12

GO:0001819 Positive regulation of cytokine production 2.05E-12

GO:0002237 Response to molecule of bacterial origin 2.25E-12

GO:0007249 I-kappaB kinase/NF-kappaB cascade 3.05E-12
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kinase) (Supplementary Fig. 1c) and LY96 (Lymphocyte

antigen 96) (Supplementary Fig. 1d) because both have a

node degree of 318.

Community analysis and functional annotation

of detected modules

Five biologically-related clusters were identified using Fast

Greedy community-structure identification algorithm

(Fig. 3). Among all the detected clusters, Cluster 1 is the

largest with 425 genes and also consists of hubs HCK and

LY96 (Fig. 3a). Cluster 2 and cluster 3 consists of 262

(Fig. 3b) and 254 (Fig. 3c) genes, respectively. Cluster 3

also consists of two hubs, SLC15A3 and HCLS1 (Fig. 3c).

Only 9 genes were observed in cluster 4 whereas cluster 5

has 2 genes (Fig. 3d). Therefore, only those communities

were selected for enrichment analyses that have at least 10

nodes. Based on this criterion, only 3 communities (Cluster

1, 2 and 3) were finally analyzed for over-representation of

GO terms.

To biologically categorize these clusters, DAVID

functional analysis tool was used to classify the genes in

each module, and observed the enrichment of GO term

‘‘Biological Process’’ in three selected modules. The top 20

statistically significant enriched GO terms for DEGs in top

3 clusters for community analysis are summarized in

(Table 2). The three most statistically significant GO terms

that were enriched in cluster 1 are response to wounding,

defense response and inflammatory response. Other

significant GO terms in this cluster include regulation of

apoptosis or programmed cell death as well as positive

regulation of response to stimulus. Cluster 2 shows higher

enrichment for GO terms related to phosphorous metabolic

processes as well as regulation of proliferation. The GO

terms of cluster 3 were mostly related to antigen processing

and presentation of peptide antigen, regulation of I-kappaB

kinase/NF-kappaB cascade and positive regulation of T

cell activation.

SNP analysis

Non-synonymous SNPs (nsSNPs) are positioned predomi-

nantly in coding regions and their consequences are

observed in phenotypic characteristics of translated protein

products (Ramensky et al. 2002). On the other hand,

influence of synonymous SNPs is not determined easily on

translated proteins probably owing to the uncertainty of

genetic code (Hunt et al. 2009). In the current study we

have focussed on deciphering the role of variants on pro-

teins and their related pathways in successive steps,

therefore we confined and selected nsSNPs for our com-

putational analysis. Figure 4 shows the distribution of

nsSNPs and total SNPs in four hub genes. From the figure

it can be observed that in spite of a large number of SNPs

identified in each hub gene, only a small percent represent

the nsSNPs. The top hub HCLS1 has 689 SNPs and 68

nsSNPs, whereas, SLC15A3 has 443 SNPs and 60 nsSNPs.

HCK has 1138 SNPs, which is highest among all four

genes, but has only 48 nsSNPs. Finally, LY96 has 796 SNPs

and only 13 nsSNPs. The estimation of ratio of synony-

mous and nonsynonymous substitution rates helps in

determining the evolutionary effect of substitutions on

protein coding genes (Yang and Nielsen 1998).

Deleterious or damaged nsSNPs by PROVEAN

protein batch tool

The PROVEAN Human protein batch tool was used for the

prediction of damaged or deleterious nsSNPs. The program

provides both PROVEAN as well as SIFT prediction

scores. The input to the PROVEAN protein batch tool

consists of detected coding nsSNPs for four hubs, that is,

68 nsSNPs for HCLS1 (UniProt ID: P14317), 60 for

SLC15A3 (UniProt ID: Q8IY34), 48 for HCK (UniProt ID:

A8K4G3), and 13 for LY96 (UniProt ID: Q9Y6Y9). The

input for each hub gene was submitted independently to

PROVEAN Human protein batch tool. Among 68 nsSNPs

for HCLS1, 29 were identified to be deleterious by PRO-

VEAN whereas 36 were identified to be damaging by SIFT

(Supplementary Table S2). For SLC15A3, 28 and 36 out of

60 nsSNPs were predicted as deleterious or damaging by

PROVEAN and SIFT, respectively (Supplementary
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Fig. 3 Communities detected
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algorithm are shown. In each
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Table S3). PROVEAN identified 21 nsSNPs as deleterious

while SIFT predicted 24 as damaging out of total 48

nsSNPs for HCK (Supplementary Table S4). Similarly, 6

and 5 nsSNPs were detected by PROVEAN and SIFT for

13 nsSNPs of LY96 gene (Supplementary Table S5).

Damaged nsSNPs by PolyPhen-2 web server

The protein sequences of each gene and their SNP substi-

tution were submitted independently to the Polyphen-2

web server. Among 68 nsSNPs for HCLS1, 47 were

identified to be damaging (Supplementary Table S2)

whereas, 37 nsSNPs were predicted to have a damaging

effect for SLC15A3 (Supplementary Table S3). Similarly,

the predicted number of damaging nsSNPs observed for

HCK was 21 out of 48 (Supplementary Table S4) and 8

nsSNPs were identified to be damaging for LY96 out of 13

nsSNPs (Supplementary Table S5). Overall, the number of

nsSNPs that are commonly predicted to be deleterious or

damaging by PROVEAN, SIFT and Polyphen-2, which

may affect protein function, is 26 for HCLS1 and

SLC15A3, 16 for HCK, and 5 for LY96 (Table 3),

respectively.

Discussion

Discovery of molecular targets and targeted therapeutics

have turned out to be a vital remedial treatment for dis-

eases, especially with the advancement of bioinformatics in

the last few decades (Dinh et al. 2007). In order to explore

the role of DEGs that were recently identified by RNA-Seq

analysis (Qian et al. 2013), and additionally related genes

involved in WNV infection, an interaction network was

constructed and node degree for each gene in the network

was calculated. HCLS1, SLC15A3, HCK and LY96 were the

genes with the highest degree and considered as hubs in the

network created from DEGs of primary human macro-

phages and additional related genes predicted by Gene-

MANIA. The most significant enriched GO terms within

the interaction network identified by GeneMANIA include

cytokine-mediated signaling and type I interferon-mediated

signaling pathways, processes related to regulation of

defense and immune response. Additional over-represented

GO terms in the network represent processes related to

immune cell activation (Table 1). This analysis is in con-

sistency with the recent study on WNV infection in which

DAVID functional annotation cluster analysis highlighted

the enrichment of processes involved in immune or defense

responses (Qian et al. 2013).

Among HCLS1, SLC15A3, HCK and LY96, only HCK

was detected as one of the hubs from a list of DEGs

whereas GeneMANIA predicted HCLS1, SLC15A3, and

LY96 genes to be a part of interaction network. These genes

may possibly play a key role in regulating the biological

process of WNV resistance and control viral infection.

HCLS1 gene codes hematopoietic cell-specific Lyn sub-

strate 1 protein (HCLS1 or HS1) that consists of an SH3

(Src homology 3) adapter domain and can trigger activa-

tion of receptor-coupled tyrosine kinases (Kitamura et al.

1989; Van Rossum et al. 2005; Huang and Burkhardt

2007). Elevated levels of HCLS1 are related with chronic

lymphoblastic leukemia (Huang et al. 2008; Scielzo et al.

2005), whereas lymphocyte precursors deficient in HCLS1

tends towards defective proliferation and differentiation of

B-lymphocytes following B cell receptor activation (Sko-

kowa et al. 2012). The members of the SLC15 protein

family have been verified to be significant drug targets at

the level of drug transport (Sasawatari et al. 2011).

SLC15A3 and SLC15A4 are the two types of histidine

transporters that have been identified in the lysosomes of

immune cells (Sakata et al. 2001). Previous studies have

established the fact that amino acids are essential in the
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Table 2 Enrichment of GO terms for DEGs in each cluster

Cluster number Term P value

1 GO:0009611, response to wounding 3.3E-28

GO:0006952, defense response 3.63E-25

GO:0006954, inflammatory response 5.64E-25

GO:0010033, response to organic substance 1.81E-15

GO:0002237, response to molecule of bacterial origin 5.35E-10

GO:0042330, taxis 5.6E-09

GO:0006935, chemotaxis 5.6E-09

GO:0042981, regulation of apoptosis 6.16E-09

GO:0043067, regulation of programmed cell death 8.52E-09

GO:0032496, response to lipopolysaccharide 8.93E-09

GO:0001817, regulation of cytokine production 8.97E-09

GO:0010941, regulation of cell death 9.62E-09

GO:0048584, positive regulation of response to stimulus 1.07E-08

GO:0048584, positive regulation of response to stimulus 1.07E-08

GO:0009617, response to bacterium 2.81E-08

GO:0001775, cell activation 2.89E-08

GO:0002684, positive regulation of immune system process 5.7E-08

GO:0002252, immune effector process 3.64E-07

GO:0002252, immune effector process 3.64E-07

GO:0002252, immune effector process 3.64E-07

2 GO:0006468, protein amino acid phosphorylation 6.19E-05

GO:0016310, phosphorylation 0.000353

GO:0046578, regulation of Ras protein signal transduction 0.000769

GO:0006793, phosphorus metabolic process 0.002414

GO:0006796, phosphate metabolic process 0.002414

GO:0042325, regulation of phosphorylation 0.002418

GO:0043242, negative regulation of protein complex disassembly 0.002544

GO:0051693, actin filament capping 0.00345

GO:0051174, regulation of phosphorus metabolic process 0.003524

GO:0019220, regulation of phosphate metabolic process 0.003524

GO:0051129, negative regulation of cellular component organization 0.003904

GO:0030835, negative regulation of actin filament depolymerization 0.004442

GO:0043244, regulation of protein complex disassembly 0.005631

GO:0050670, regulation of lymphocyte proliferation 0.006219

GO:0030834, regulation of actin filament depolymerization 0.006224

GO:0032944, regulation of mononuclear cell proliferation 0.006539

GO:0070663, regulation of leukocyte proliferation 0.006539

GO:0030837, negative regulation of actin filament polymerization 0.0069

GO:0051494, negative regulation of cytoskeleton organization 0.00736

GO:0050671, positive regulation of lymphocyte proliferation 0.00736

3 GO:0019882, antigen processing and presentation 1.35E-16

GO:0048002, antigen processing and presentation of peptide antigen 3.75E-12

GO:0002474, antigen processing and presentation of peptide antigen via MHC class I 2.22E-09

GO:0043122, regulation of I-kappaB kinase/NF-kappaB cascade 5.18E-09

GO:0002684, positive regulation of immune system process 1.27E-08

GO:0002684, positive regulation of immune system process 1.27E-08

GO:0050863, regulation of T cell activation 1.56E-08

GO:0043123, positive regulation of I-kappaB kinase/NF-kappaB cascade 1.66E-08
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regulation of immune responses (Sasawatari et al. 2011).

HCK gene is mainly expressed in cells having monocyte or

macrophage lineage (Ziegler et al. 1987) that are important

HIV-1 target cells and viral reservoirs (Martı́n and Bandrés

1999; Orenstein 2001; Crowe et al. 2003). HCK encodes a

505-residue polypeptide, which is closely related to

pp56lck, a lymphocyte-specific protein-tyrosine kinase

(Ziegler et al. 1987). HCK also one of the members of Src

kinase family, is known to interact with NEF (HIV-1 vir-

ulence factor) and promotes viral pathogenesis of HIV/

AIDS (Trible et al. 2006). LY96 gene encodes a glyco-

protein lymphocyte antigen 96 (LY96; also denoted as

ESOP-1 or MD-2) that is involved in endotoxin recognition

and offers a foundation for antiseptic drug development

(Ohto et al. 2007). MD-2 interacts with the extracellular

domain of Toll-like receptor 4 (TLR4) and is necessary for

the activation of TLR4 by lipopolysaccharide (LPS) pre-

sent on the outer membranes of Gram-negative bacterial

cell walls (Mullen et al. 2003; Dziarski and Gupta 2000).

Recognizing the structure and function of biological

networks is indispensable for the investigation of biologi-

cal processes. Many recent studies have used network

based studies to investigate various biological problems

(Malik et al. 2014; Lee and Lee 2013). In this work, we

identified 5 functional modules or communities in the

interaction network using fast greedy algorithm imple-

mented as GLAY (Su et al. 2010) plugin for Cytoscape.

Furthermore, the functional enrichment of only 3 modules

(based on the criteria described in the methods section) was

explored by using functional annotation tool DAVID. Our

analysis shows that the modules are enriched in functions

related to defense response, inflammatory response, phos-

phorous metabolic processes and regulation of I-kappaB

kinase/NF-kappaB cascade. According to previous studies,

subjects with severe infection exhibit high expression

levels of cytokine and chemokine genes (IL-8, TNF),

antiviral signaling genes such as TMEM158 (involved in

antiviral immune signaling) (Ishikawa and Barber 2008),

Table 2 continued

Cluster number Term P value

GO:0010740, positive regulation of protein kinase cascade 2.22E-08

GO:0019884, antigen processing and presentation of exogenous antigen 2.48E-08

GO:0019884, antigen processing and presentation of exogenous antigen 2.48E-08

GO:0051249, regulation of lymphocyte activation 3.45E-08

GO:0050865, regulation of cell activation 4.18E-08

GO:0050867, positive regulation of cell activation 7.7E-08

GO:0010627, regulation of protein kinase cascade 1.47E-07

GO:0002694, regulation of leukocyte activation 1.47E-07

GO:0050870, positive regulation of T cell activation 1.48E-07

GO:0050870, positive regulation of T cell activation 1.48E-07

GO:0051251, positive regulation of lymphocyte activation 1.66E-07

GO:0046649, lymphocyte activation 2.28E-07

Fig. 4 Distribution of total

SNPs and nsSNPs in four hub

genes
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Table 3 List of nsSNPs that are commonly predicted to be damaging/deleterious/affect protein function by PROVEAN, SIFT as well as

PolyPhen-2

Gene (No. of

predicted

nsSNPS)

SNP ID AA

change

PPH2_Prob PPH2 PROVEAN

score

PROVEAN

(cutoff = -2.5)

SIFT

score

SIFT

(cutoff = 0.05)

LY96 (5) rs141631661 12 S C 0.997 Probably damaging -3.04 Deleterious 0.003 Damaging

rs199978698 29 D N 1 Probably damaging -2.54 Deleterious 0 Damaging

rs142571384 70 D Y 1 Probably damaging -7.36 Deleterious 0.002 Damaging

rs367973351 99 D H 0.999 Probably damaging -4.5 Deleterious 0.004 Damaging

rs202107994 143 E A 0.962 Probably damaging -2.85 Deleterious 0 Damaging

HCK (16) rs199815006 125 F C 1 Probably damaging -6.34 Deleterious 0 Damaging

rs372761182 168 D N 0.999 Probably damaging -3.61 Deleterious 0.002 Damaging

rs200896933 186 G R 1 Probably damaging -7.13 Deleterious 0 Damaging

rs202001086 193 R Q 0.936 Possibly damaging -3.13 Deleterious 0.001 Damaging

rs199531584 212 G R 0.996 Probably damaging -7.01 Deleterious 0 Damaging

rs189947820 239 R W 1 Probably damaging -6.86 Deleterious 0 Damaging

rs200867413 257 W R 1 Probably damaging -12.37 Deleterious 0 Damaging

rs200178250 271 T M 0.973 Probably damaging -4.89 Deleterious 0 Damaging

rs151054795 339 I T 0.981 Probably damaging -3.86 Deleterious 0.029 Damaging

rs114505022 350 A T 0.983 Probably damaging -3.52 Deleterious 0.001 Damaging

rs145632103 384 R W 1 Probably damaging -7.46 Deleterious 0 Damaging

rs377468533 392 T M 0.554 Possibly damaging -3.83 Deleterious 0.022 Damaging

rs137871205 435 R W 1 Probably damaging -6.94 Deleterious 0 Damaging

rs374360915 435 R Q 0.993 Probably damaging -3.2 Deleterious 0.001 Damaging

rs142491977 470 M V 0.773 Possibly damaging -3.13 Deleterious 0.001 Damaging

rs17093828 482 P Q 1 Probably damaging -7.15 Deleterious 0 Damaging

HCLS1 (26) rs150386736 7 G A 1 Probably damaging -4.789 Deleterious -4.789 Damaging

rs372797954 19 D E 0.999 Probably damaging -3.437 Deleterious -3.437 Damaging

rs148254045 21 W C 1 Probably damaging -11.321 Deleterious -11.321 Damaging

rs146539124 54 I T 0.986 Probably damaging -3.533 Deleterious -3.533 Damaging

rs371758156 155 R C 0.999 Probably damaging -2.749 Deleterious -2.749 Damaging

rs372191150 163 V L 0.971 Probably damaging -2.684 Deleterious -2.684 Damaging

rs34767273 166 D H 1 Probably damaging -5.588 Deleterious -5.588 Damaging

rs144275149 181 T M 1 Probably damaging -2.589 Deleterious -2.589 Damaging

rs147129061 184 H Y 1 Probably damaging -5.782 Deleterious -5.782 Damaging

rs368893881 184 H Q 1 Probably damaging -7.69 Deleterious -7.69 Damaging

rs36104070 200 I T 0.908 Possibly damaging -3.216 Deleterious -3.216 Damaging

rs143408084 203 D E 0.891 Possibly damaging -3.417 Deleterious -3.417 Damaging

rs202020296 211 G S 0.977 Probably damaging -2.55 Deleterious -2.55 Damaging

rs61749596 218 P L 0.97 Probably damaging -2.595 Deleterious -2.595 Damaging

rs144589441 225 T M 1 Probably damaging -3.399 Deleterious -3.399 Damaging

rs150713543 240 A V 0.998 Probably damaging -3.167 Deleterious -3.167 Damaging

rs145562548 291 P L 0.984 Probably damaging -2.73 Deleterious -2.73 Damaging

rs368506277 430 G W 1 Probably damaging -5.551 Deleterious -5.551 Damaging

rs376245237 441 G V 1 Probably damaging -2.85 Deleterious -2.85 Damaging

rs201252242 451 P L 1 Probably damaging -9.08 Deleterious -9.08 Damaging

rs202175021 452 D N 0.997 Probably damaging -3.99 Deleterious -3.99 Damaging

rs142545513 453 D N 1 Probably damaging -4.19 Deleterious -4.19 Damaging

rs377000996 464 G A 1 Probably damaging -5.148 Deleterious -5.148 Damaging

rs78618042 467 R Q 0.999 Probably damaging -3.049 Deleterious -3.049 Damaging

rs374286282 476 L P 1 Probably damaging -6.108 Deleterious -6.108 Damaging

rs142693789 479 A E 0.998 Probably damaging -4.51 Deleterious -4.51 Damaging
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and CD69, a C-type lectin that plays a vital role in T cell

activation, proliferation and signaling (Martı́n and Sán-

chez-Madrid 2011). Moreover, it has been observed in

subjects with history of severe infection displayed higher

expression levels of anti-inflammatory proteins such as

PI3, a protease inhibitor that acts to reduce inflammation

(Verrier et al. 2012), and TNFAIP3 that restrains NF-kappa

B activation (Song et al. 1996).

One of the prime objectives of human genetics lies in

deciphering the functional consequences of inherited vari-

ations between individuals. Even though millions of SNPs

are said to be present in the human population, the small

percentage of this set will be posing potential disease risk.

Among the genomic variants, non-synonymous SNPs are

of prime interest as they lead to amino acid change in

translated protein products, and hence, these variants are

primarily studied for their relevance in inheritable diseases

and drug sensitivity (Yue and Moult 2006). It has been

further termed as one of the promising arena for research in

the field of genomics (Karchin et al. 2005). The effect of

majority of nsSNPs is non-detrimental as they are deleted

by natural selection. Assessment of lethality of detrimental

nsSNPS is traced primarily based on phylogenetic infor-

mation (i.e. correlation with residue conservation) and

structural approaches (PolyPhen). However, studies have

also revealed many human disease genes as a resultant of

Table 3 continued

Gene (No. of

predicted

nsSNPS)

SNP ID AA

change

PPH2_Prob PPH2 PROVEAN

score

PROVEAN

(cutoff = -2.5)

SIFT

score

SIFT

(cutoff = 0.05)

SLC15A3 (26) rs377584250 51 G R 0.991 Probably damaging -4.34 Deleterious 0.002 Damaging

rs199743083 93 L P 0.994 Probably damaging -4.74 Deleterious 0.001 Damaging

rs201623464 187 V G 1 Probably damaging -6.04 Deleterious 0 Damaging

rs140918009 191 G C 0.992 Probably damaging -7.49 Deleterious 0 Damaging

rs142952480 197 R H 1 Probably damaging -3.35 Deleterious 0.007 Damaging

rs377073448 213 S L 1 Probably damaging -4.21 Deleterious 0.002 Damaging

rs140942899 256 P L 0.999 Probably damaging -5.93 Deleterious 0.002 Damaging

rs147368970 258 G D 1 Probably damaging -5.28 Deleterious 0 Damaging

rs373404805 318 P L 1 Probably damaging -6.64 Deleterious 0.003 Damaging

rs372172597 327 W R 1 Probably damaging -11.75 Deleterious 0.004 Damaging

rs34738190 337 Y C 0.998 Probably damaging -7.53 Deleterious 0 Damaging

rs188010920 369 T M 0.983 Probably damaging -3.17 Deleterious 0.021 Damaging

rs201019779 371 P L 1 Probably damaging -8.64 Deleterious 0.001 Damaging

rs140596697 392 R C 0.99 Probably Damaging -4.74 Deleterious 0.005 Damaging

rs140945002 400 R W 0.518 Possibly damaging -4.65 Deleterious 0.027 Damaging

rs199509067 405 P S 1 Probably damaging -4.34 Deleterious 0.025 Damaging

rs142111240 464 Q R 1 Probably damaging -3.54 Deleterious 0 Damaging

rs377527454 471 S G 1 Probably damaging -3.54 Deleterious 0 Damaging

rs148648672 473 I T 0.998 Probably damaging -3.85 Deleterious 0.002 Damaging

rs377256065 481 E Q 0.999 Probably damaging -2.63 Deleterious 0 Damaging

rs143864458 488 P L 1 Probably damaging -9.1 Deleterious 0 Damaging

rs367924777 489 R C 1 Probably damaging -4.81 Deleterious 0.001 Damaging

rs369243035 531 G E 1 Probably damaging -5.26 Deleterious 0 Damaging

rs374216372 537 R W 0.996 Probably damaging -3.22 Deleterious 0.023 Damaging

rs199844407 552 T M 0.999 Probably damaging -3.56 Deleterious 0.002 Damaging

rs371994103 562 R C 1 Probably damaging -3.57 Deleterious 0.001 Damaging

AA Change amino acid substitution, PPH2_Prob a classifier probability of the variation being damaging as predicted by PolyPhen-2, PPH2

PolyPhen-2, an automatic tool for the prediction of potential effect of an amino acid substitution on the structure and function of human proteins

by using physical and evolutionary comparative considerations, PROVEAN Score score that correlates with biological activity level and might be

used as an indicator for the amount of functional effect of a protein variation. If the PROVEAN score is B to a given threshold, the variation is

predicted as deleterious, whereas the variant is predicted to have a neutral effect if the score is above the threshold, PROVEAN Protein Variation

Effect Analyzer (PROVEAN) is a tool that predicts whether an amino acid substitution or indel effects the biological function of a protein, SIFT

Score scaled probability of an amino acid substitution being tolerated. Substitutions with scores\0.05 are predicted to affect protein function,

SIFT Sorting Tolerant From Intolerant (SIFT) is a tool to predict whether an amino acid substitution affects protein function
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exonic or noncoding mutations affecting regulatory regions

(Hudson 2003; Yan et al. 2002).

The findings from this work propose that the application

of computational algorithms, such as PROVEAN, SIFT,

and PolyPhen-2 analysis may offer a substitute approach to

pick target SNPs by understanding the effect of SNPs on

the functional attributes or molecular phenotype of a pro-

tein. In future studies, structural models of the mutants will

be built that may be applicable for predicting the delete-

rious nsSNPs, which in turn will be useful for additional

genotype-phenotype research as well as pharmacogenetics

studies.

Conclusion

Identification of hub genes that possess potential to cause

disease-related symptoms will lead to a comprehensive

approach to devise a therapeutic method for curing com-

plex diseases. This study determined interactions between

hub genes HCLS1, SLC15A3, HCK and LY96 from DEGs

of primary human macrophages. These genes act in signal

transduction, cell differentiation, peptide transport and

related important cellular pathways. Moreover, we short-

listed three functional modules related to defense and

inflammatory responses in WNV infected macrophages.

Hence, these clusters can be targeted in further studies to

devise a therapeutic target that stabilizes their gene

expression and aids in curbing symptoms related to WNV-

linked infection. In addition to targeting multiple targets,

gene-based approach aids in devising more personalized

approach, which further enhances its efficacy.
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