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Abstract The West Nile virus (WNV) infections are
generally asymptomatic and are considered as immediate
concerns of biodefense due to the lack of any therapeutic
remedies. In this work, we created an interaction network
of 1159 differentially expressed genes to detect potential
hub genes from WNV infected primary human macro-
phages. We go on to explore the genetic variations that can
alter the expression and function of identified hub genes
(HCLS1, SLCI15A3, HCK, and LY96) using the PROVEAN
Protein Batch tool and PolyPhen-2. Community analysis of
the network revealed that these clusters were enriched in
GO terms such as inflammatory response and regulation of
proliferation. Analysis of hub genes can aid in determining
their degree of conservation and may help us in under-
standing their functional roles in biological systems. The
nsSNPs proposed in this work may be further targeted

Electronic supplementary material The online version of this
article (doi:10.1007/s13258-015-0297-y) contains supplementary
material, which is available to authorized users.

D} Iftikhar Aslam Tayubi
Iftikhar.tayubi @ gmail.com

Faculty of Computing and Information Technology, King
Abdulaziz University, Rabigh 21911,
Kingdom of Saudi Arabia

School of Chemistry and Biochemistry, Thapar University,
Patiala 147004, Punjab, India

Biomedical Informatics Center of ICMR, Post Graduate
Institute of Medical Education and Research (PGIMER),
Chandigarh 160012, India

Perdana University Centre for Bioinformatics, MARDI
Complex, Jalan MAEPS Perdana, 43400 Serdang, Selangor,
Malaysia

through experimental methods for improving treatment
towards the infection of WNV.
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Introduction

West Nile virus (WNV) is a mosquito-borne neurotropic
viruses and belongs to a member of Japanese encephalitis
virus (JEV) serogroup in the family Flaviviridae (Heinz
et al. 2000), which comprises viruses for yellow fever and
dengue (Brinton 2002). Originally first detected in Uganda,
it has been endemically spreading in various regions across
the world, including the Middle East, some regions of
Africa, Europe and United States at different periods
(Suthar et al. 2013). However, serologically it was first
tested in Assam, India in 2006 (Chowdhury et al. 2014).
Belonging to the Flaviviridae family, it is encoded by a
~11 kb positive-sense, single-stranded RNA (ssRNA)
genome (Suthar et al. 2013). It follows a replication life
cycle, which is involved in binding to cell surface receptor,
leading to fusion with the membrane and final delivery of
infectious RNA genome into the cytoplasm (Suthar et al.
2013). The genome injected is further translated as a single
polyprotein, which undergoes subsequent cleavage by viral
and host proteases to generate structural and non-structural
proteins. The structural proteins form the virion encapsi-
dating the viral RNA, whereas, the non-structural proteins
form the replication complex, which synthesize the nega-
tive- and positive-sense viral RNA. Hence, targeting the
replication pathway and primarily the infectious genome
can aid in curbing the expression of WNV (Suthar et al.
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2013). Additionally, targeting at gene level will also
enhance the effectiveness of therapy involved. Identifica-
tion of the prime regions of interest and further the can-
didate genes for gene therapy can be determined via RNA
sequencing (RNA-Seq) methods (Mercer et al. 2014).

The RNA-Seq method comprises of the direct
sequencing of cDNA for monitoring quantitative gene
expression (Nagalakshmi et al. 2010). It involves direct
sequencing of cDNAs using high-throughput DNA
sequencing technologies followed by mapping of reads to
the reference genome (Nagalakshmi et al. 2010). The
methodology allows identifications of introns and exons
and further helps in recognizing intronic and exonic
boundaries and boundary ends of the gene of interest
(Nagalakshmi et al. 2010). RNA-Seq is presently suggested
as cost-effective new tool, which can be applied for deci-
phering the genetic basis of diseases, and traits that could
not be detected based on previous conventional gene-dis-
covery methods (Bamshad et al. 2011). RNA-Seq has been
employed to investigate biological phenomena in diverse
areas such as viral infections (Jones et al. 2014), cancer
(Young et al. 2014) and cardiomyopathy (Christodoulou
et al. 2014). Recently, we have also used RNA-Seq anal-
ysis to explore the role of glycogenes in skeletal muscle
development in MYOG,4 cells (Lee et al. 2014) and also
used precomputed expression values from mouse RNA-Seq
data to understand the role glycogenes in various biological
processes that are involved in the development of brain,
muscle, and liver tissues (Firoz et al. 2014).

RNA-Seq has also been applied to identify 1514 dif-
ferentially expressed (DE) transcripts from primary human
macrophages, in response to infection with WNV (Qian
et al. 2013). In vivo studies of WNV infection using high-
throughput digital gene expression analysis have reported
common genes that are differentially expressed in multiple
tissues upon WNYV infections as well as genes that are
differentially expressed in specific tissues following WNV
infection (Pefia et al. 2014). These studies have helped in
developing a framework that can aid in the discovery of
genes and their associated biological functions and in turn,
decipher their impact on causing such infectious diseases.
Therefore, in this work, we have performed a network
analysis to identify the key hubs from the list of candidates
differentially expressed transcripts that were recently
detected from RNA-Seq analysis of primary human mac-
rophages infected with WNV (Qian et al. 2013). We also
explored the Single Nucleotide Polymorphisms (SNPs)
within these potential hubs that can be suggested as the
prime regions for susceptibility towards WNV infection.
Additionally, we also explored functionally important
modules in the network of WNV infected DE genes by
using community analysis. The regions suggested in this
study can be further targeted via experimental therapeutic
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technologies like gene knockout technique, gene targeting,
etc., for developing treatment towards suppressing the
pathogenic action of WNV.

Materials and methods
Datasets

In this work, 1514 differentially expressed (DE) transcripts
were used for our computational analysis and were down-
loaded from a recent study on WNV infected macrophages
(Qian et al. 2013). These DE transcripts represent the RNA-
Seq analysis originally carried out by Qian et al. (2013) using
Illumina Genome Analyzer 2 and expression levels for each
transcript estimated by using maximum likelihood based
method employed in the Cufflinks program (Trapnell et al.
2010). The dataset was filtered by removing any duplicate
transcripts and represent the final set of differentially
expressed genes (DEGs) used in this study.

Network analysis

GeneMANIA [www.genemania.org/] cytoscape plugin
(Montojo et al. 2010) was utilized to determine the func-
tional interactions between DEGs based on the GO term
“biological process” and Homo sapiens as reference spe-
cies. The predicted relationships between the genes in the
network comprises of co-expression, physical and genetic
interactions, pathways, co-localization, protein domain
similarity, and predicted interactions.

Identification of hub genes

Biological networks exhibit the scale-free property (Albert
2005) with hubs representing nodes with many connections
in the network. NetworkAnalyzer plugin of Cytoscape
(Smoot et al. 2011) was utilized to determine the hubs by
calculating the values of the node degree distribution.
Three genes with highest node degree distribution were
identified as hubs in the current network.

Community analysis

The modules with functional property were determined by
applying greedy community-structure detection algorithm
via GLay [http://brainarray.mbni.med.umich.edu/sugang/
glay] (Suetal. 2010) plugin in Cytoscape. For identifying the
over-represented biological functions within each cluster,
the clusters were subjected to a functional enrichment
analysis by focusing only on communities with at least 10
nodes. The functional enrichment analysis was carried out
using the DAVID functional analysis tool.


http://www.genemania.org/
http://brainarray.mbni.med.umich.edu/sugang/glay
http://brainarray.mbni.med.umich.edu/sugang/glay

Genes Genom (2015) 37:679-691

681
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Computational analysis of non-synonymous SNPs
(nsSNPs) of predicted hub genes

Data mining the SNP information for hub genes identified
in humans in this study were retrieved from National
Centre for Biotechnology Information (NCBI) database
dbSNP [http://www.ncbi.nlm.nih.gov/projects/SNP]. Three
different programs were used to predict the damaged or
deleterious coding nsSNPs.

Prediction of deleterious or damaging coding
nsSNPs using the PROVEAN protein batch tool

The PROVEAN Protein Batch tool [http://provean.jcvi.org/
index.php] was used to providle PROVEAN (Protein
Variation Effect Analyzer) and SIFT (Sorting Intolerant
From Tolerant) predictions for a list of protein variants.
Both PROVEAN and SIFT are software tools that predict
whether an amino acid substitution has an impact on the
biological function of a protein if the score, lies below a
certain threshold value. In PROVEAN, the clustering of
BLAST hits is carried out, and the best 30 clusters of
closely linked sequences of the supporting sequence set
that is further employed to make the predictions. For every
supporting sequence, a delta alignment score is computed
and then averaged within and across clusters generating a
final PROVEAN score (Choi et al. 2012). A default score
threshold of —2.5 or above is considered deleterious
whereas anything less than this cut-off score has a neutral
effect. On the other hand, SIFT is a multi-step algorithm
and uses sequence homology based method to classify

amino acid substitutions (Kumar et al. 2009). The PRO-
VEAN Protein Batch tool accepts a list of protein sequence
variants as input for the predictions.

Prediction of functional modification of coding
nsSNPs by polymorphism phenotyping v2
(PolyPhen-2)

PolyPhen-2 [http://genetics.bwh.harvard.edu/pph2/] tool
was used to study the possible consequence of nsSNPs on
protein structure and function. The web server predicts the
potential effect of amino acid substitution on the stability
and function of human proteins by employing structural as
well as comparative evolutionary considerations. For each
specified amino acid residue substitution in a protein,
PolyPhen-2 mines a variety of sequence and structural
characteristics of the replacement position and supplies
them to a probabilistic classifier. For this work, we have
used the provided batch query option and selected the
default advance option for generating the predictions
(Adzhubei et al. 2010).

Results

We downloaded a list of 1514 transcripts that were deter-
mined to be differentially expressed between control
unaffected and WNV-infected samples (Qian et al. 2013).
The data were further filtered by removing any duplicate
transcripts so that each transcript represents a unique DEG.
As a result, a non-redundant set of 1159 DEGs was
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Table 1 Top 30 significantly

enriched gene ontology (GO) GO ID Description Q-value

terms detected by GeneMANIA 560019221 Cytokine-mediated signaling pathway 1.55E—39

for differentially expressed K ] . .

genes and additional related GO0:0060337 Type I interferon-mediated signaling pathway 3.75E-30

genes GO:0071357 Cellular response to type I interferon 3.75E-30
G0:0034340 Response to type I interferon 4.83E-30
G0:0034341 Response to interferon-gamma 4.83E-30
GO0:0071346 Cellular response to interferon-gamma 6.73E—27
GO0:0060333 Interferon-gamma-mediated signaling pathway 1.85E—-23
GO:0051707 Response to other organism 3.10E—-21
GO0:0009607 Response to biotic stimulus 1.00E—-20
GO:0001817 Regulation of cytokine production 1.00E—-20
GO:0031347 Regulation of defense response 2.62E-20
GO:0001816 Cytokine production 7.21E-20
GO0:0006954 Inflammatory response 7.52E—17
GO0:0002694 Regulation of leukocyte activation 7.96E—17
GO0:0050865 Regulation of cell activation 7.96E—17
GO0:0051249 Regulation of lymphocyte activation 1.85E—16
GO:0046649 Lymphocyte activation 1.18E—15
GO0:0045088 Regulation of innate immune response 3.63E—15
G0:0002252 Immune effector process 4.69E—15
GO:0050867 Positive regulation of cell activation 4.69E—15
GO0:0002696 Positive regulation of leukocyte activation 8.86E—15
GO:0009615 Response to virus 2.20E—14
GO:0051251 Positive regulation of lymphocyte activation 2.68E—14
GO0:0042110 T cell activation 3.73E—14
GO:0050778 Positive regulation of immune response 3.37E—13
GO:0031349 Positive regulation of defense response 5.70E—13
GO0:0050863 Regulation of T cell activation 1.76E—12
GO0:0001819 Positive regulation of cytokine production 2.05E—12
G0:0002237 Response to molecule of bacterial origin 2.25E—12
GO0:0007249 I-kappaB kinase/NF-kappaB cascade 3.05E—12

obtained that consisted of 253 down-regulated and 906 up-
regulated genes (Supplementary Table S1). The complete
workflow of computational methodology adopted in this
study is diagrammatically represented in (Fig. 1).

Network construction and identification of hub
genes

How DEGs interact with each other and additional related
genes in the network was investigated by GeneMANIA
Cytoscape plugin (Montojo et al. 2010). A GeneMANIA
network analysis of DEGs points to enrichment of signal-
ing pathways such as cytokine-mediated and type I inter-
feron-mediated signaling pathways. The other over-
represented GO terms includes inflammatory response,
regulation of leukocyte and lymphocyte activation, and
regulation of cell activation (Table 1).
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The interaction network deduced via GeneMANIA was
further analyzed in Cytoscape 2.8.2 (Smoot et al. 2011).
The initial network comprising of 952 nodes and 48,263
edges was filtered to 952 nodes and 44,785 edges by
removing duplicate edges. All the genes in the network are
represented by circles and the interactions between them
are represented as edges. The up-regulated genes are shown
in green whereas; red nodes represent down-regulated
genes. Moreover, the additional related genes predicted by
GeneMANIA are shown in cyan (Fig. 2).

The genes determined as hubs with high node degree
distribution encode, HCLS1 (Hematopoietic lineage cell-
specific protein or Hematopoietic cell-specific LYN sub-
strate 1), (Supplementary Fig. 1a) a top hub with the node
degree of 342 whereas, SLC15A3 (Solute carrier family 15
member 3) (Supplementary Fig. 1b) was the second hub
having a node degree of 323. The genes with third highest
node degree are represented by HCK (Tyrosine-protein
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Fig. 2 Interaction network between DEGs and related additional
genes. In this network, green nodes represent up-regulated genes
whereas red nodes represent down-regulated genes and GeneMANIA
predicted genes are shown in cyan. Hub genes are shown as purple
diamonds and represent the genes with highest node degree

kinase) (Supplementary Fig. 1c) and LY96 (Lymphocyte
antigen 96) (Supplementary Fig. 1d) because both have a
node degree of 318.

Community analysis and functional annotation
of detected modules

Five biologically-related clusters were identified using Fast
Greedy community-structure identification algorithm
(Fig. 3). Among all the detected clusters, Cluster 1 is the
largest with 425 genes and also consists of hubs HCK and
LY96 (Fig. 3a). Cluster 2 and cluster 3 consists of 262
(Fig. 3b) and 254 (Fig. 3c) genes, respectively. Cluster 3
also consists of two hubs, SLC15A3 and HCLS1 (Fig. 3c¢).
Only 9 genes were observed in cluster 4 whereas cluster 5
has 2 genes (Fig. 3d). Therefore, only those communities
were selected for enrichment analyses that have at least 10
nodes. Based on this criterion, only 3 communities (Cluster
1, 2 and 3) were finally analyzed for over-representation of
GO terms.

To biologically categorize these clusters, DAVID
functional analysis tool was used to classify the genes in
each module, and observed the enrichment of GO term
“Biological Process” in three selected modules. The top 20
statistically significant enriched GO terms for DEGs in top
3 clusters for community analysis are summarized in
(Table 2). The three most statistically significant GO terms
that were enriched in cluster 1 are response to wounding,
defense response and inflammatory response. Other

significant GO terms in this cluster include regulation of
apoptosis or programmed cell death as well as positive
regulation of response to stimulus. Cluster 2 shows higher
enrichment for GO terms related to phosphorous metabolic
processes as well as regulation of proliferation. The GO
terms of cluster 3 were mostly related to antigen processing
and presentation of peptide antigen, regulation of I-kappaB
kinase/NF-kappaB cascade and positive regulation of T
cell activation.

SNP analysis

Non-synonymous SNPs (nsSNPs) are positioned predomi-
nantly in coding regions and their consequences are
observed in phenotypic characteristics of translated protein
products (Ramensky et al. 2002). On the other hand,
influence of synonymous SNPs is not determined easily on
translated proteins probably owing to the uncertainty of
genetic code (Hunt et al. 2009). In the current study we
have focussed on deciphering the role of variants on pro-
teins and their related pathways in successive steps,
therefore we confined and selected nsSNPs for our com-
putational analysis. Figure 4 shows the distribution of
nsSNPs and total SNPs in four hub genes. From the figure
it can be observed that in spite of a large number of SNPs
identified in each hub gene, only a small percent represent
the nsSNPs. The top hub HCLSI has 689 SNPs and 68
nsSNPs, whereas, SLC15A3 has 443 SNPs and 60 nsSNPs.
HCK has 1138 SNPs, which is highest among all four
genes, but has only 48 nsSNPs. Finally, LY96 has 796 SNPs
and only 13 nsSNPs. The estimation of ratio of synony-
mous and nonsynonymous substitution rates helps in
determining the evolutionary effect of substitutions on
protein coding genes (Yang and Nielsen 1998).

Deleterious or damaged nsSNPs by PROVEAN
protein batch tool

The PROVEAN Human protein batch tool was used for the
prediction of damaged or deleterious nsSNPs. The program
provides both PROVEAN as well as SIFT prediction
scores. The input to the PROVEAN protein batch tool
consists of detected coding nsSNPs for four hubs, that is,
68 nsSNPs for HCLS1 (UniProt ID: P14317), 60 for
SLCI15A3 (UniProt ID: Q81Y34), 48 for HCK (UniProt ID:
A8K4G3), and 13 for LY96 (UniProt ID: Q9Y6Y9). The
input for each hub gene was submitted independently to
PROVEAN Human protein batch tool. Among 68 nsSNPs
for HCLS1, 29 were identified to be deleterious by PRO-
VEAN whereas 36 were identified to be damaging by SIFT
(Supplementary Table S2). For SLC15A3, 28 and 36 out of
60 nsSNPs were predicted as deleterious or damaging by
PROVEAN and SIFT, respectively (Supplementary
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Fig. 3 Communities detected
by fast greedy (GLay) clustering
algorithm are shown. In each
community a Cluster 1

b Cluster 2 ¢ Cluster 3 d Cluster
4 e Cluster 5, up- and down-
regulated genes are shown as
green and red nodes
respectively, whereas
GeneMANIA predicted genes
are represented as cyan. Nodes
in purple diamond shape
represent hub genes
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Fig. 3 continued

Table S3). PROVEAN identified 21 nsSNPs as deleterious
while SIFT predicted 24 as damaging out of total 48
nsSNPs for HCK (Supplementary Table S4). Similarly, 6
and 5 nsSNPs were detected by PROVEAN and SIFT for
13 nsSNPs of LY96 gene (Supplementary Table SS5).

Damaged nsSNPs by PolyPhen-2 web server

The protein sequences of each gene and their SNP substi-
tution were submitted independently to the Polyphen-2
web server. Among 68 nsSNPs for HCLS1, 47 were
identified to be damaging (Supplementary Table S2)
whereas, 37 nsSNPs were predicted to have a damaging
effect for SLC15A3 (Supplementary Table S3). Similarly,
the predicted number of damaging nsSNPs observed for
HCK was 21 out of 48 (Supplementary Table S4) and 8
nsSNPs were identified to be damaging for LY96 out of 13
nsSNPs (Supplementary Table S5). Overall, the number of
nsSNPs that are commonly predicted to be deleterious or
damaging by PROVEAN, SIFT and Polyphen-2, which

may affect protein function, is 26 for HCLSI1 and
SLC15A3, 16 for HCK, and 5 for LY96 (Table 3),
respectively.

Discussion

Discovery of molecular targets and targeted therapeutics
have turned out to be a vital remedial treatment for dis-
eases, especially with the advancement of bioinformatics in
the last few decades (Dinh et al. 2007). In order to explore
the role of DEGs that were recently identified by RNA-Seq
analysis (Qian et al. 2013), and additionally related genes
involved in WNV infection, an interaction network was
constructed and node degree for each gene in the network
was calculated. HCLS1, SLC15A3, HCK and LY96 were the
genes with the highest degree and considered as hubs in the
network created from DEGs of primary human macro-
phages and additional related genes predicted by Gene-
MANIA. The most significant enriched GO terms within
the interaction network identified by GeneMANIA include
cytokine-mediated signaling and type I interferon-mediated
signaling pathways, processes related to regulation of
defense and immune response. Additional over-represented
GO terms in the network represent processes related to
immune cell activation (Table 1). This analysis is in con-
sistency with the recent study on WNYV infection in which
DAVID functional annotation cluster analysis highlighted
the enrichment of processes involved in immune or defense
responses (Qian et al. 2013).

Among HCLSI1, SLC15A3, HCK and LY96, only HCK
was detected as one of the hubs from a list of DEGs
whereas GeneMANIA predicted HCLSI, SLC15A3, and
LY96 genes to be a part of interaction network. These genes
may possibly play a key role in regulating the biological
process of WNV resistance and control viral infection.
HCLSI gene codes hematopoietic cell-specific Lyn sub-
strate 1 protein (HCLS1 or HS1) that consists of an SH3
(Src homology 3) adapter domain and can trigger activa-
tion of receptor-coupled tyrosine kinases (Kitamura et al.
1989; Van Rossum et al. 2005; Huang and Burkhardt
2007). Elevated levels of HCLS1 are related with chronic
lymphoblastic leukemia (Huang et al. 2008; Scielzo et al.
2005), whereas lymphocyte precursors deficient in HCLS1
tends towards defective proliferation and differentiation of
B-lymphocytes following B cell receptor activation (Sko-
kowa et al. 2012). The members of the SLC15 protein
family have been verified to be significant drug targets at
the level of drug transport (Sasawatari et al. 2011).
SLCI15A3 and SLC15A4 are the two types of histidine
transporters that have been identified in the lysosomes of
immune cells (Sakata et al. 2001). Previous studies have
established the fact that amino acids are essential in the
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Table 2 Enrichment of GO terms for DEGs in each cluster

Cluster number Term P value

1 GO:0009611, response to wounding 3.3E-28
GO0:0006952, defense response 3.63E—25
G0:0006954, inflammatory response 5.64E—25
GO0:0010033, response to organic substance 1.81E—15
GO0:0002237, response to molecule of bacterial origin 5.35E—-10
GO:0042330, taxis 5.6E—09
GO:0006935, chemotaxis 5.6E—09
GO0:0042981, regulation of apoptosis 6.16E—09
G0:0043067, regulation of programmed cell death 8.52E—09
G0:0032496, response to lipopolysaccharide 8.93E—-09
GO:0001817, regulation of cytokine production 8.97E—-09
GO0:0010941, regulation of cell death 9.62E—09
GO:0048584, positive regulation of response to stimulus 1.07E—08
GO0:0048584, positive regulation of response to stimulus 1.07E—08
GO0:0009617, response to bacterium 2.81E—-08
GO:0001775, cell activation 2.89E—-08
G0:0002684, positive regulation of immune system process 5.7E—-08
G0:0002252, immune effector process 3.64E—07
G0:0002252, immune effector process 3.64E—07
G0:0002252, immune effector process 3.64E—07

2 GO0:0006468, protein amino acid phosphorylation 6.19E—05
GO0:0016310, phosphorylation 0.000353
GO0:0046578, regulation of Ras protein signal transduction 0.000769
GO0:0006793, phosphorus metabolic process 0.002414
GO:0006796, phosphate metabolic process 0.002414
G0:0042325, regulation of phosphorylation 0.002418
GO:0043242, negative regulation of protein complex disassembly 0.002544
GO0O:0051693, actin filament capping 0.00345
GO:0051174, regulation of phosphorus metabolic process 0.003524
GO0:0019220, regulation of phosphate metabolic process 0.003524
GO0:0051129, negative regulation of cellular component organization 0.003904
GO0:0030835, negative regulation of actin filament depolymerization 0.004442
G0:0043244, regulation of protein complex disassembly 0.005631
GO:0050670, regulation of lymphocyte proliferation 0.006219
GO:0030834, regulation of actin filament depolymerization 0.006224
GO0:0032944, regulation of mononuclear cell proliferation 0.006539
GO0:0070663, regulation of leukocyte proliferation 0.006539
GO0:0030837, negative regulation of actin filament polymerization 0.0069
GO0:0051494, negative regulation of cytoskeleton organization 0.00736
GO0:0050671, positive regulation of lymphocyte proliferation 0.00736

3 GO:0019882, antigen processing and presentation 1.35E—16
GO:0048002, antigen processing and presentation of peptide antigen 3.75E—12
GO:0002474, antigen processing and presentation of peptide antigen via MHC class I 2.22E-09
GO0:0043122, regulation of I-kappaB kinase/NF-kappaB cascade 5.18E—09
GO0:0002684, positive regulation of immune system process 1.27E—08
GO0:0002684, positive regulation of immune system process 1.27E—08
GO0:0050863, regulation of T cell activation 1.56E—08
G0:0043123, positive regulation of I-kappaB kinase/NF-kappaB cascade 1.66E—08
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Table 2 continued

Cluster number Term P value
GO0:0010740, positive regulation of protein kinase cascade 2.22E—08
GO0:0019884, antigen processing and presentation of exogenous antigen 2.48E—08
GO:0019884, antigen processing and presentation of exogenous antigen 2.48E—08
GO:0051249, regulation of lymphocyte activation 3.45E—-08
GO:0050865, regulation of cell activation 4.18E—-08
GO0:0050867, positive regulation of cell activation 7.7E—08
GO0:0010627, regulation of protein kinase cascade 1.47E—-07
GO0:0002694, regulation of leukocyte activation 1.47E—07
GO0:0050870, positive regulation of T cell activation 1.48E—07
GO0:0050870, positive regulation of T cell activation 1.48E—07
GO0:0051251, positive regulation of lymphocyte activation 1.66E—07
GO:0046649, lymphocyte activation 2.28E—07

Fig. 4 Distribution of total 1200
SNPs and nsSNPs in four hub
genes 1000 -

800

689
600
400
200
68
0 .

HCLS1

regulation of immune responses (Sasawatari et al. 2011).
HCK gene is mainly expressed in cells having monocyte or
macrophage lineage (Ziegler et al. 1987) that are important
HIV-1 target cells and viral reservoirs (Martin and Bandrés
1999; Orenstein 2001; Crowe et al. 2003). HCK encodes a
505-residue polypeptide, which is closely related to
pp36'*, a lymphocyte-specific protein-tyrosine kinase
(Ziegler et al. 1987). HCK also one of the members of Src
kinase family, is known to interact with NEF (HIV-1 vir-
ulence factor) and promotes viral pathogenesis of HIV/
AIDS (Trible et al. 2006). LY96 gene encodes a glyco-
protein lymphocyte antigen 96 (LY96; also denoted as
ESOP-1 or MD-2) that is involved in endotoxin recognition
and offers a foundation for antiseptic drug development
(Ohto et al. 2007). MD-2 interacts with the extracellular
domain of Toll-like receptor 4 (TLR4) and is necessary for
the activation of TLR4 by lipopolysaccharide (LPS) pre-
sent on the outer membranes of Gram-negative bacterial
cell walls (Mullen et al. 2003; Dziarski and Gupta 2000).

Distribution of nsSNPs 1138

796
443
60
13

a8
SLC15A3 HCK LY96

B No.of SNPs M No. of coding nsSNP

Recognizing the structure and function of biological
networks is indispensable for the investigation of biologi-
cal processes. Many recent studies have used network
based studies to investigate various biological problems
(Malik et al. 2014; Lee and Lee 2013). In this work, we
identified 5 functional modules or communities in the
interaction network using fast greedy algorithm imple-
mented as GLAY (Su et al. 2010) plugin for Cytoscape.
Furthermore, the functional enrichment of only 3 modules
(based on the criteria described in the methods section) was
explored by using functional annotation tool DAVID. Our
analysis shows that the modules are enriched in functions
related to defense response, inflammatory response, phos-
phorous metabolic processes and regulation of I-kappaB
kinase/NF-kappaB cascade. According to previous studies,
subjects with severe infection exhibit high expression
levels of cytokine and chemokine genes (IL-8, TNF),
antiviral signaling genes such as TMEM158 (involved in
antiviral immune signaling) (Ishikawa and Barber 2008),
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Table 3 List of nsSNPs that are commonly predicted to be damaging/deleterious/affect protein function by PROVEAN, SIFT as well as

PolyPhen-2

Gene (No. of SNP ID AA PPH2_Prob PPH2 PROVEAN PROVEAN SIFT SIFT

predicted change score (cutoff = —2.5) score (cutoff = 0.05)

nsSNPS)

LY96 (5) 15141631661 128 C 0.997 Probably damaging —-3.04 Deleterious 0.003 Damaging
rs199978698 29 DN 1 Probably damaging —2.54 Deleterious 0 Damaging
rs142571384 70D Y 1 Probably damaging —17.36 Deleterious 0.002 Damaging
rs367973351 99D H 0.999 Probably damaging —4.5 Deleterious 0.004 Damaging
rs202107994 143 EA  0.962 Probably damaging —2.85 Deleterious 0 Damaging

HCK (16) rs199815006 125 F C 1 Probably damaging —6.34 Deleterious 0 Damaging
rs372761182 168 DN  0.999 Probably damaging —3.61 Deleterious 0.002 Damaging
15200896933 188§ GR 1 Probably damaging -7.13 Deleterious 0 Damaging
15202001086 193 RQ 0.936 Possibly damaging -3.13 Deleterious 0.001 Damaging
rs199531584 212 GR  0.996 Probably damaging —7.01 Deleterious 0 Damaging
15189947820 239RW 1 Probably damaging —6.86 Deleterious 0 Damaging
rs200867413 257 WR 1 Probably damaging  —12.37 Deleterious 0 Damaging
rs200178250 271 TM  0.973 Probably damaging —4.89 Deleterious 0 Damaging
rs151054795 3391T 0.981 Probably damaging —3.86 Deleterious 0.029 Damaging
rs114505022 350 AT  0.983 Probably damaging —-3.52 Deleterious 0.001 Damaging
rs145632103 384 RW 1 Probably damaging —7.46 Deleterious 0 Damaging
18377468533 392 TM  0.554 Possibly damaging —3.83 Deleterious 0.022 Damaging
rs137871205 435RW 1 Probably damaging —6.94 Deleterious 0 Damaging
18374360915 435R Q  0.993 Probably damaging =32 Deleterious 0.001 Damaging
13142491977 470 MV 0.773 Possibly damaging -3.13 Deleterious 0.001 Damaging
1517093828 482 P Q 1 Probably damaging —7.15 Deleterious 0 Damaging

HCLS1 (26) rs150386736 7 G A 1 Probably damaging —4.789 Deleterious —4.789 Damaging
18372797954 19D E 0.999 Probably damaging —3.437 Deleterious —3.437 Damaging
rs148254045 21 WC 1 Probably damaging  —11.321 Deleterious —11.321 Damaging
rs146539124  541T 0.986 Probably damaging —3.533 Deleterious —3.533 Damaging
rs371758156  155R C  0.999 Probably damaging —2.749 Deleterious —2.749 Damaging
rs372191150 163 VL  0.971 Probably damaging —2.684 Deleterious —2.684 Damaging
1834767273 166 DH 1 Probably damaging —5.588 Deleterious —5.588 Damaging
13144275149 I81TM 1 Probably damaging —2.589 Deleterious —2.589 Damaging
15147129061 184HY 1 Probably damaging —5.782 Deleterious —5.782 Damaging
rs368893881 184HQ 1 Probably damaging —7.69 Deleterious —7.69 Damaging
rs36104070 2001 T 0.908 Possibly damaging -3.216 Deleterious -3.216 Damaging
rs143408084 203 DE  0.891 Possibly damaging —3.417 Deleterious —3.417 Damaging
rs202020296 211 GS 0977 Probably damaging —2.55 Deleterious —2.55 Damaging
1861749596 218 PL 0.97 Probably damaging —2.595 Deleterious —2.595 Damaging
13144589441 225TM 1 Probably damaging —3.399 Deleterious —3.399 Damaging
13150713543 240 AV 0.998 Probably damaging -3.167 Deleterious -3.167 Damaging
15145562548 291 PL 0.984 Probably damaging —2.73 Deleterious —2.73 Damaging
1368506277 430G W 1 Probably damaging —5.551 Deleterious —5.551 Damaging
rs376245237 441GV 1 Probably damaging —2.85 Deleterious —2.85 Damaging
15201252242 451 PL 1 Probably damaging —9.08 Deleterious —9.08 Damaging
rs202175021 452D N 0.997 Probably damaging —-3.99 Deleterious -3.99 Damaging
rs142545513 453 DN 1 Probably damaging —4.19 Deleterious —4.19 Damaging
rs377000996 464 G A 1 Probably damaging —5.148 Deleterious —5.148 Damaging
1378618042 467 R Q  0.999 Probably damaging —3.049 Deleterious —3.049 Damaging
18374286282 476 L P 1 Probably damaging —6.108 Deleterious —6.108 Damaging
13142693789 479 AE  0.998 Probably damaging —4.51 Deleterious —4.51 Damaging
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Table 3 continued

Gene (No. of  SNP ID AA PPH2_Prob  PPH2 PROVEAN PROVEAN SIFT SIFT

predicted change score (cutoff = —2.5)  score (cutoff = 0.05)

nsSNPS)

SLCI5A3 (26) rs377584250 51 GR 0.991 Probably damaging —4.34 Deleterious 0.002 Damaging
rs199743083 93 L P 0.994 Probably damaging —4.74 Deleterious 0.001 Damaging
15201623464 187VG 1 Probably damaging —6.04 Deleterious 0 Damaging
rs140918009 191 GC  0.992 Probably damaging —7.49 Deleterious 0 Damaging
rs142952480 197RH 1 Probably damaging -3.35 Deleterious 0.007 Damaging
rs377073448 213 S L 1 Probably damaging —4.21 Deleterious 0.002 Damaging
rs140942899 256 PL 0.999 Probably damaging —5.93 Deleterious 0.002 Damaging
rs147368970 258 GD 1 Probably damaging —5.28 Deleterious 0 Damaging
1s373404805 318 PL 1 Probably damaging —6.64 Deleterious 0.003 Damaging
rs372172597 327 WR 1 Probably damaging  —11.75 Deleterious 0.004 Damaging
rs34738190 337 YC 0998 Probably damaging —7.53 Deleterious 0 Damaging
rs188010920 369 TM  0.983 Probably damaging —3.17 Deleterious 0.021 Damaging
rs201019779 371 PL 1 Probably damaging —8.64 Deleterious 0.001 Damaging
rs140596697 392 R C  0.99 Probably Damaging —4.74 Deleterious 0.005 Damaging
rs140945002 400 R'W  0.518 Possibly damaging —4.65 Deleterious 0.027 Damaging
rs199509067 405 P S 1 Probably damaging —4.34 Deleterious 0.025 Damaging
rs142111240 464 QR 1 Probably damaging —3.54 Deleterious 0 Damaging
18377527454 471 S G 1 Probably damaging —3.54 Deleterious 0 Damaging
rs148648672 473 1T 0.998 Probably damaging —3.85 Deleterious 0.002 Damaging
1377256065 481 EQ  0.999 Probably damaging —2.63 Deleterious 0 Damaging
rs143864458 488 P L 1 Probably damaging —9.1 Deleterious 0 Damaging
18367924777 489 R C 1 Probably damaging —4.81 Deleterious 0.001 Damaging
rs369243035 S31GE 1 Probably damaging —-5.26 Deleterious 0 Damaging
rs374216372 537 R'W  0.996 Probably damaging —-3.22 Deleterious 0.023 Damaging
rs199844407 552 TM  0.999 Probably damaging —3.56 Deleterious 0.002 Damaging
rs371994103 562 R C 1 Probably damaging —3.57 Deleterious 0.001 Damaging

AA Change amino acid substitution, PPH2_Prob a classifier probability of the variation being damaging as predicted by PolyPhen-2, PPH?2
PolyPhen-2, an automatic tool for the prediction of potential effect of an amino acid substitution on the structure and function of human proteins
by using physical and evolutionary comparative considerations, PROVEAN Score score that correlates with biological activity level and might be
used as an indicator for the amount of functional effect of a protein variation. If the PROVEAN score is < to a given threshold, the variation is
predicted as deleterious, whereas the variant is predicted to have a neutral effect if the score is above the threshold, PROVEAN Protein Variation

Effect Analyzer (PROVEAN) is a tool that predicts whether an amino acid substitution or indel effects the biological function of a protein, SIFT
Score scaled probability of an amino acid substitution being tolerated. Substitutions with scores <0.05 are predicted to affect protein function,
SIFT Sorting Tolerant From Intolerant (SIFT) is a tool to predict whether an amino acid substitution affects protein function

and CD69, a C-type lectin that plays a vital role in T cell
activation, proliferation and signaling (Martin and San-
chez-Madrid 2011). Moreover, it has been observed in
subjects with history of severe infection displayed higher
expression levels of anti-inflammatory proteins such as
PI3, a protease inhibitor that acts to reduce inflammation
(Verrier et al. 2012), and TNFAIP3 that restrains NF-kappa
B activation (Song et al. 1996).

One of the prime objectives of human genetics lies in
deciphering the functional consequences of inherited vari-
ations between individuals. Even though millions of SNPs
are said to be present in the human population, the small
percentage of this set will be posing potential disease risk.

Among the genomic variants, non-synonymous SNPs are
of prime interest as they lead to amino acid change in
translated protein products, and hence, these variants are
primarily studied for their relevance in inheritable diseases
and drug sensitivity (Yue and Moult 2006). It has been
further termed as one of the promising arena for research in
the field of genomics (Karchin et al. 2005). The effect of
majority of nsSNPs is non-detrimental as they are deleted
by natural selection. Assessment of lethality of detrimental
nsSNPS is traced primarily based on phylogenetic infor-
mation (i.e. correlation with residue conservation) and
structural approaches (PolyPhen). However, studies have
also revealed many human disease genes as a resultant of
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exonic or noncoding mutations affecting regulatory regions
(Hudson 2003; Yan et al. 2002).

The findings from this work propose that the application
of computational algorithms, such as PROVEAN, SIFT,
and PolyPhen-2 analysis may offer a substitute approach to
pick target SNPs by understanding the effect of SNPs on
the functional attributes or molecular phenotype of a pro-
tein. In future studies, structural models of the mutants will
be built that may be applicable for predicting the delete-
rious nsSNPs, which in turn will be useful for additional
genotype-phenotype research as well as pharmacogenetics
studies.

Conclusion

Identification of hub genes that possess potential to cause
disease-related symptoms will lead to a comprehensive
approach to devise a therapeutic method for curing com-
plex diseases. This study determined interactions between
hub genes HCLSI, SLC15A3, HCK and LY96 from DEGs
of primary human macrophages. These genes act in signal
transduction, cell differentiation, peptide transport and
related important cellular pathways. Moreover, we short-
listed three functional modules related to defense and
inflammatory responses in WNV infected macrophages.
Hence, these clusters can be targeted in further studies to
devise a therapeutic target that stabilizes their gene
expression and aids in curbing symptoms related to WNV-
linked infection. In addition to targeting multiple targets,
gene-based approach aids in devising more personalized
approach, which further enhances its efficacy.
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