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Random Projection Random Discretization
Ensembles—Ensembles of Linear

Multivariate Decision Trees
Amir Ahmad and Gavin Brown

Abstract—In this paper, we present a novel ensemble method random projection random discretization ensembles (RPRDE) to create
ensembles of linear multivariate decision trees by using a univariate decision tree algorithm. The present method combines the better
computational complexity of a univariate decision tree algorithm with the better representational power of linear multivariate decision
trees. We develop random discretization (RD) method that creates random discretized features from continuous features. Random
projection (RP) is used to create new features that are linear combinations of original features. A new dataset is created by
augmenting discretized features (created by using RD) with features created by using RP. Each decision tree of a RPRD ensemble is
trained on one dataset from the pool of these datasets by using a univariate decision tree algorithm. As these multivariate decision
trees (because of features created by RP) have more representational power than univariate decision trees, we expect accurate
decision trees in the ensemble. Diverse training datasets ensure diverse decision trees in the ensemble. We study the performance of
RPRDE against other popular ensemble techniques using C4.5 tree as the base classifier. RPRDE matches or outperforms other
popular ensemble methods. Experiments results also suggest that the proposed method is quite robust to the class noise.

Index Terms—Ensembles, decision trees, discretization, randomization, random projections, noise

1 INTRODUCTION

ENSEMBLES are a combination of multiple base mod-
els [1]–[3]; the final classification depends on the com-

bined outputs of individual models. Classifier ensembles
have shown to produce better results than single mod-
els, provided the classifiers are accurate and diverse [2].
Ensembles perform best when base models are unstable–
classifiers whose output undergoes significant changes in
generalisation with small changes in the training data-
decision trees and neural networks are in this class.

Several methods have been proposed to build deci-
sion tree ensembles. Randomization is introduced to build
diverse decision trees. Bagging [4] and Boosting [5] introduce
randomization by manipulating the training data supplied
to each classifier. Multiboosting [6] combines the princi-
ple of Bagging with AdaBoost. Ho [7] proposed Random
Subspaces that selects random subsets of input features for
training. Ho [7] suggested that random subspace method
works well when there is certain redundancy in the dataset,
especially in the collections of features. They suggest that
for the random subspace method to work on datasets
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having a small number of features, redundancy need to be
introduced artificially by using simple functions of the fea-
tures. Breiman [8] combined Random Subspaces technique
with Bagging to create Random Forests. To build a tree, it
uses a bootstrap replica of the training sample, then dur-
ing the tree growing phase, at each node the optimal split
is selected from a random subset of size K of candidate fea-
tures. Rodriguez et al. [9] proposed Rotation Forests, produc-
ing new input features using Principal Component Analysis
(PCA). Dietterich [10] proposed a method to grow ensem-
bles that consist of randomized trees; instead of selecting
the best split, they select a test uniformly among the best
K tests. Geurts et al. [11] proposed Extremely Randomized
Trees (ERT), Extremely Randomized Trees combines the fea-
ture randomization of Random Subspaces with a totally
random selection of the cut-point. Random Decision Trees
(RDT) [12], [13] proposed by Fan et al. use completely
random splits points.

As for large ensembles, the significant difference
between different ensemble methods almost disappear [14],
there has been research to develop strategies that can
create small ensembles with good or near optimal per-
formance [15]. Small ensembles have advantage of faster
prediction process.

In this work, we develop a novel ensemble method
Random Projection Discretization Ensembles (RPRDE) that
is a combination of popular random projection (RP)
method [16], [17] and the proposed Random Discretization
(RD) method. RPRDE, with a univariate decision tree algo-
rithm, creates the ensembles of multivariate decision trees.
This kind of mechanism to create decision tree ensembles
has not been used in any popular ensemble method. Hence,
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Fig. 1. Example of univariate (solid line) and linear multivariate (dashed
line) splits that separate instances of two classes in two dimensional
data.

it can be combined with any popular ensemble method.
One of the motivations for this method is that it should
work well with small ensembles. Creating accurate deci-
sion trees is the key for these kinds of ensembles, we will
discuss later that RPRD trees are likely to be quite accurate.

In Section 2, we discuss linear multivariate decision
trees. In Section 3, we present the principle of RP and its
application for tree ensembles. In Section 4, we introduce
RD. Section 5 deals with the motivation for combining RP
and RD. Experiments and the performance evaluation are
presented in Section 6. Section 7 describes conclusion and
future work.

2 LINEAR MULTIVARIATE DECISION TREES

Decision trees are built using top down induction methods.
In a decision tree, each node partitions the available pat-
terns into two sets. Univariate decision trees like C4.5 [18]
are limited to testing a single feature at a node. This reduces
the representational power of decision tree as univariate
decision trees are restricted to splits of the instance space
that are orthogonal to the feature’s axis. Multivariate deci-
sion trees [19], [20] overcome the representational limitation
of univariate decision trees (Fig. 1). Linear multivariate
decision trees allow the node to test a linear combination
of the numeric features. This test can be presented as,

s =
m∑

i=1

cixi ≤ Z, (1)

where xi are the numeric features, ci are the correspond-
ing real valued coefficients, m the number of attributes
and Z is a numeric constant. These trees are also called
oblique decision trees as they uses oblique (non-axis-
parallel) hyperplanes to partition the data. In some problem
domains multivariate decision trees perform better than
univariate decision trees [21]. However, these trees are not
very popular as it is computationally expensive to create
these trees [22].

Different approaches have been proposed to create linear
multivariate decision trees. Breiman et al. [19] suggested a
method to create multivariate decision trees that uses a per-
turbation algorithm. SADT [22] uses simulated annealing
to compute hyperplanes. Simulated annealing introduces
an element of randomness so SADT generates a different
decision tree in each run. OC1 [23] improves SADT by
combining deterministic hill climbing with randomization.

In the next section, we discuss random projection (RP) as
a technique to construct diverse linear multivariate decision
trees.

3 RANDOM PROJECTION (RP) ENSEMBLES

In this section, we discuss random projection and its
application to create diverse linear multivariate decision
trees. For many data mining techniques, it is difficult to
handle high dimensional data. Dimensionality reduction
is a method to handle high dimensional data. Principal
Component Analysis (PCA) is a popular choice for the
dimensionality reduction problem. However, it is quite
expensive to compute for high dimensional data. Random
projection (RP) has been emerged as a powerful method
for the dimensionality reduction problem. Random projec-
tion is a technique of mapping a number of points in a
high-dimensional space into a low dimensional space with
the property that the Euclidean distance of any two points
is approximately preserved through the projection. The key
idea behind RP is Johnson and Linden Strauss theorem [16],
[17] that states that if the points in a vector space are pro-
jected onto a randomly selected subspace of suitably high
dimension, then the distances and relative angles between
the points [24] are approximately preserved.

In RP, the original data is projected onto a lower dimen-
sionality subspace using a random matrix whose columns
have unit lengths. Using matrix notation where Dm×n is
the original set of n, m dimensional observations. The pro-
jection of the data onto a lower d-dimensional subspace is
defined as

DRP
d×n = Rd×mDm×n, (2)

where Rd×m is a Random Matrix and DRP
d×n is the new

d × n projected matrix.
RP has been successfully used for creating clustering

ensembles as different random projections create different
clustering results [25]. Schclar and Rokach [26] introduced
a classifier ensemble method by using random projections.
In this method, new datasets were created by using random
projections. Classifiers learn on those new diverse datasets
were diverse, hence diverse classifiers were created. They
used nearest-neighbour classifier as the base classifier to
show that their method outperformed the Bagging algo-
rithm. However, no comparative study with more complex
ensemble methods like AdaBoost.M1 was presented. In the
present work, we use RP for following reasons.

1) Datasets created by using random projection have
features that are linear combinations of original
features - RP projects the original data to a new fea-
ture space. These features are linear combinations
of original features. If a univariate decision tree is
trained on the projected data, we get a orthogo-
nal decision tree for the projected data. This tree
is an oblique tree in the original feature space.
The main difference between this approach of cre-
ating oblique decision trees and other approaches
discussed in Section 2 is that in this approach the
orientation of a hyperplane is fixed (that depends on
new features), only the location of the hyperplane
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Fig. 2. Algorithm for RP ensembles.

is learned during the tree growing phase whereas
in the other approaches both location and orienta-
tion of the hyperplane are computed during the tree
growing phase.

2) Different random projections create different
datasets, hence, diverse decision trees (that learn
on these datasets) are obtained - To build an
ensemble of decision trees, we need diverse decision
trees. RP helps in creating these diverse decision
trees. Different random projections of a dataset cre-
ate different new datasets. If we train univariate
decision trees on these new datasets, we get diverse
decision trees that are linear multivariate decision
trees in the original feature space. We can combine
these trees to get an ensemble of decision trees.

The algorithm for an ensemble of RP decision trees is
given in Fig. 2. In the next section, we describe Random
Discretization (RD) method that can be used to create
decision tree ensembles.

4 RANDOM DISCRETIZATION (RD) ENSEMBLES

In this section, we present Random Discretization ensem-
ble method. We also discuss the representational power
of RD ensembles. First, we describe a novel method,
Randomized Discretization (RD), that creates diverse dis-
cretized datasets.

Discretization divides the features values into differ-
ent categories depending upon intervals they fall into.
For example, if we want to discretize a feature into three
categories, we need two points x1 and x2 between the max-
imum (xmax) and the minimum (xmin) values of the feature,
if x1 < x2 a features value x is discretized using following
rules;

if (x ≤ x1) the category of x = 1,
if (x > x1) and (x ≤ x2) the category of x = 2,
if (x > x2) the category of x = 3,
where x is the feature value.

Fig. 3. Random Discretization (RD) method.

To create s categories, we need s − 1 points. There are
different methods to create these points. However, all these
methods produce a single and unique discretized dataset.
For creating ensembles, we need diverse datasets so that
the learning on these datasets creates diverse classifiers.

We propose a novel method Random Discretization (RD)
to select these s − 1 points. In this method, we introduce
randomization in discretization of various features. To cre-
ate s categories s − 1 data points are selected randomly from
the training data. For each feature, every selected data point
has one value, this way we can have s − 1 data points for
every feature. The feature can be discretized into s cate-
gories using these s − 1 data points. It is possible that for
some features we have less than s−1 boundaries as two or
more selected data points may have same values for these
features. That will produce less number of categories for
those features. In the extreme case for some features, all
selected points have features values equal to the minimum
or the maximum values of the features. In other words, we
have no point for the features between the minimum and
the maximum values of the feature. s−1 points are selected
randomly between the minimum and the maximum values
of the feature for these kinds of features. The proposed RD
algorithm is presented in Fig. 3.

Table 1 shows a two dimensional dataset. For dividing
every dimension into three categories, we need two points.
Two data points are selected randomly, for example we
select D2 and D4. For the feature X, 3.7 and 6.8 are the
two points for the discretization. For the feature Y, 5.8 and

TABLE 1
Example Dataset
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Fig. 4. Algorithm for RD ensembles.

4.5 are the two points for the discretization so the dataset
is discretized by using following rules,

1) For X feature
if X feature value≤ 3.7, the category of X = 1,
if 6.8 ≥ X feature value > 3.7, the category of X = 2,
if X feature value > 6.8, the category of X = 3.

2) For Y feature
if Y feature value ≤ 4.5, the category of Y = 1,
if if 5.8 ≥ Y feature value > 4.5, the category of
Y = 2,
if Y feature value>5.8, the category of Y = 3.

Each decision tree in an ensemble learns on one dis-
cretized dataset from the pool of different datasets created
by RD. If the order of values of discretized features is main-
tained, the discretized dataset is an ordinal data. A decision
tree treats this dataset as continuous during the learning
phase. Results of different decision trees in the ensemble
are combined to get the final prediction. The algorithm for
RD ensembles is presented in Fig. 4.

4.1 Motivation for Random Discretization (RD)
Ensembles

In this section, we focus our discussion on C4.5 type
decision trees (univariate decision trees). In an ensemble,
we need accurate and diverse classifiers. RD builds an
ensemble of classifiers by changing category boundaries.
Univariate decision trees have representational problem
because of their orthogonal properties. They have difficulty
in learning non-orthogonal decision boundaries with lim-
ited amount of data. We will discuss in this section that
when we have infinite RD decision trees in an ensemble,
a piece-wise continuous function produced by the RD ensem-
ble approximates to a diagonal concept (non-orthogonal concept)
for a two dimensional data. Hence, RD ensembles have bet-
ter representational power as compared to a single decision
tree.

Ensembles of diverse decision trees solve the representa-
tional problem associated with a single univariate decision

tree as combined results of decision trees produce a good
approximation of a non-orthogonal concept. Dietterich [1]
shows that for majority voting an ensemble of small size
decision trees is similar to a large size decision tree and
can create a good approximation of a diagonal concept.
To get diverse decision trees, we need trees with differ-
ent split points. In RD, the dataset is discretized randomly.
When decision trees learn on the discretized datasets, nodes
can split only on the bin boundaries. As the number of
boundaries is small (for s categories, there are only s-1
category boundaries) and these boundaries are random,
there is a small probability that decision trees trained on
different discretized datasets have same node splits for a
feature. In other words, there is a high probability that each
decision tree divides the data space at different points. Hence, it
creates diverse decision trees. In case of infinite RD deci-
sion trees in an ensemble, a piece-wise continuous function
produced by RD ensembles approximates to the diagonal
concept. We may extend this argument to the other deci-
sion boundaries to show that RD ensembles have good
representational power. On the basis of the above argu-
ment, it can be hypothesized that a RD ensemble has better
representational power as compared to a single decision
tree.

The success of ensemble methods depends on the cre-
ation of uncorrelated classifiers [3]. A RD tree has limited
tree growing options as it has to follow bin boundaries.
In other words, diverse decision trees are produced as dif-
ferent options are provided (different bin boundaries) at
tree growing phase. Very accurate classifiers may not be
obtained by using the RD method, however, this technique
ensures very diverse decision trees with good represen-
tation powers for RD ensembles. In the next section, we
present the RPRDE method that combines the RP transfor-
mation and the RD transformation.

5 RANDOM PROJECTION RANDOM
DISCRETIZATION ENSEMBLES (RPRDE)

In the last two sections, we discussed two different ensem-
ble methods; RP ensembles and RD ensembles. In this
section, we discuss our proposed approach RPRDE that
combines features created by RP and RD methods.

Different ensemble methods have been proposed.
Some of them are based on different mechanisms (see
Section 1) like Bagging [4], AdaBoost.M1[27] and Random
Subspaces [7] etc. whereas some of the ensemble meth-
ods combine methods that have different mechanisms,
for example Random Forests [8] combines Bagging with
Random Subspaces, Multiboosting [6] combines Bagging
with AdaBoost and Rotation Forest [9] combines random-
ization in the feature space division with Bagging. The basic
idea behind these “hybrid” ensemble techniques is that as
the mechanisms differ for different ensemble methods, their
combination may out-perform either in isolation.

RD and RP have different mechanisms; RD is based on
random discretization in input space whereas RP creates
new features that are the linear combinations of the original
features. We propose that they can be combined to create
better ensemble method (RPRDE). In RD, we create m dis-
cretized features, whereas RP creates d features (d < m)
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Fig. 5. Algorithm for the RPRDE method.

(these d features are the linear combinations of the orig-
inal m features). We combine these two feature spaces to
get m + d features. A univariate decision tree is trained on
this m+d dimensional data. Though we train the univariate
decision tree, we get decision surfaces both orthogonal (due
to m discretized features) and oblique to the axes defined
by the features of the input space (due to the new d fea-
tures). We expect that RPRD trees have more representational
power as compared to RD decision trees and RP decision trees
as they have more decision surfaces.

Decision trees do the feature selection at each node [18].
This property is useful for these type of datasets (when
the original features are augmented with new features), as
new features will only be selected when they are better
features for classification than the original features. Hence,
trees trained on the new data (RP features + RD features)
may be better classifiers as compared to decision trees with
the original features.

Accurate decision trees with reasonable diversity are
useful for small ensembles [9]. RPRD trees use all the
data points of the training dataset (for example in Bagging
and AdaBoost, a tree use a part of the training data, in
Random Subspaces a tree uses some of the features). RPRD
trees have more representational power as new features
are added to the original features (these are discretized
features so we loss some of the information). We do not
employ any randomization process during the tree growing
process as in Random Forests and ERT. We expect accu-
rate decision trees because of these reasons. Good accuracy
of RPRD trees is useful for the success of small RPRD
ensembles.

New training datasets are created by using different
RD transformations and RP transformations, hence, diverse
datasets are obtained. Decision trees trained on these
diverse datasets are expected to be diverse. The algorithm
to create a RPRD ensemble is presented in Fig. 5.

5.1 The Analysis of RPRDE
As discussed in Section 2, univariate decision trees have
representational problem. An ensemble of decision trees has
better representational power. In Section 4, we discussed
the learning of a diagonal problem by RD ensembles.
The question arises whether RD ensembles or any other
decision tree ensembles techniques can learn a diagonal
decision boundary problem accurately. Ahmad et al. [28]
showed that infinite-sized ensembles, consisting of finite
sized decision trees, created by a pure randomized method
(split points are created randomly), cannot learn a diagonal
problem accurately. This suggests that these methods can
be improved upon for some sets of problems by chang-
ing the decision boundaries. In RPRDE, we are including
RP features which are linear combinations of the origi-
nal features. The decision boundary will change in this
new feature space. There is a high likelihood that in
this new feature space, decision tree ensembles can learn
the problem easily. We could not show theoretically that
RPRDE can learn each decision boundary accurately. There
is a possibility that like Random Forests [29], RPRDE is
not consistent. In the next section, we will discuss the
structure of RPRD tree to understand the behaviour of
RDPDE.

5.2 The Structure of RPRD Trees
To understand the performance of RPRD ensembles, we
also carried out experiments in which features created using
RP were combined with the original features (In RPRDE,
RP features are concatenated with RD features). The per-
formance of ensembles created using the method was not
comparable to RPRD ensembles. The following argument
suggests that the good combination of RP features and RD
features in a RPRD tree is the reason for the success of
RPRD ensembles.

Experiments suggest that C4.5 trees do not perform
well with random projections [30]. Fradkin [30] suggests
“Random projections and decision trees are perhaps not a good
combination”. This means new features created by using
random projections are not as informative as the original
features. Hence, when we combine the original features
with the features created using random projections and
train a univariate decision tree on it, there is a strong proba-
bility, that the original features are selected at higher levels
as they are more informative, whereas the features created
by using random projections will be selected at lower lev-
els as they are less informative. This suggests that these
trees are not very diverse (as they are similar at higher
levels).

In RPRD trees, the discretized original attributes are
used. These attributes are different for different trees (they
are created with RD features), hence even if these attributes
are selected at higher levels, they create diverse trees. As
there is a loss of information due to the discretization,
it makes the original attributes less informative. Hence,
when the discretized attributes are used, then there is more
probability that attributes created by using random pro-
jections will be selected at higher levels of decision trees.
That ensures more diverse trees as different trees use dif-
ferent new attributes (different trees use different attributes
created using different random projections).
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5.3 Weaknesses
Both RD and RP can be applied only for the pure continu-
ous datasets. That restricts the application of RPRDE. In this
approach, we use random projections to create new features
that add extra computational cost. These new features are
added to the original features that increase the size of the
training dataset. Hence, the tree learning phase may need
more computational resources as compared to the train-
ing phase for the data with the original dataset. However,
the performance of RPRDE justifies the additional compu-
tational cost. In the next section, we present experimental
results.

5.4 The Related Work
In RPRD new attributes (RD attributes and RP attributes)
are created and combined to create new datasets. In this
section, we will discuss some related works.

In one of the variants of Random Forests [8], Breiman
defined new features by taking random linear combina-
tions of features. This is done to introduce more diversity
among decision trees. In rotation forests [9] new input fea-
tures are created by using Principal Component Analysis
(PCA). RS [7] is good when there is certain redundancy
in features. For datasets, where there is no redundancy,
redundancy needs to be introduced artificially by concate-
nating new features that are linear combinations of original
features to the original features and treating this as the
data.

Balcan et al. [31] suggested a mapping that uses a given
kernel and random unlabelled examples. This mapping gen-
erates a set of features such that if a dataset is linearly separable
with a margin under the kernel, then it is approximately sepa-
rable in this new feature space. Augmenting kernel features
with original features has been suggested by Balcan and
Blum [32]. Rwebangira [33] observed by using different
types of classifiers that if these new kernel features are
concatenated with the original features then the classifiers
trained on these new datasets perform better than the clas-
sifiers trained on the original data or the data created by
kernel features. These results suggest that classifiers can
use strengths of both kinds of features, this results in the
improved performance of classifiers [33]. However, this
proposal is only for single classifier and in RPRDE dis-
cretized features (created from original features) are used
instead of original features to increase the diversity of the
decision trees.

6 EXPERIMENTS

We carried out the comparative study of RPRDE
method against the other popular ensemble methods by
using Weka package [34] and the Dice softwate [12]
(http://www.dice4dm.com/) to test the effectiveness of
RPRDE approach. In this section, we present our experi-
mental results.

We carried out experiments with Bagging [4],
Adaboost.M1 [5], Multiboosting [6], and Random
Forests [9] modules from Weka. For RDT [12], we
used Dice software. As discussed in Section 1, Bagging
and RF create diverse trees by using random methods.
Adaboost.M1 is a boosting algorithm and Multiboosting

combines Bagging and Adaboost. Therefore, in our com-
parative study, we have compared our method with
different kinds of decision tree ensemble methods. For
RD ensembles, RP ensembles, RPRDE, and Bagging,
unpruned J48 (Weka implementation of C4.5 [18]) was
used. Whereas, for Adaboost.M1 and Multiboosting, we
carried out experiments with pruned J48 and unpruned
J48. For pruned decision tree, default confidence threshold
(0.25) for pruning was used. For Random Forests, the
number of features selected to select from at each node
is set at �log2(|m| + 1)� (default value). We carried out
experiments on two different sizes of ensembles. The sizes
were selected such that one may represent small ensembles
and the other large ensembles. There is no clear definition
of small ensembles and large ensembles. Following [9], for
small ensembles we selected the size of an ensemble as
10. Different sizes of ensembles were selected in different
papers, following [11] we selected the size of ensembles as
100 for large ensembles.

For Multiboosting, when the ensemble size was 10, the
number of subcommittees was chosen as 3 whereas for the
ensemble size 100, the number of subcommittees was cho-
sen as 10. Default settings were used for the rest of the
parameters. Datasets were normalized (linear scaling to the
unit range) to bring all the features on the same scale.

The experiments were conducted following the 5 × 2
cross-validation [35]. The original test, proposed by
Dietterich [35], to compare the performance of classifiers
suffers from low replicability. Alpaydin [36] proposes a
modification to the 5 × 2 cross-validation F test. We used
this test for our experiments. We considered a confidence
level of 95% for this test. (P) with an ensemble method in
the paper represents that the base classifier is unpruned
J48, whereas (U) represents that the base classifier is
unpruned J48.

6.1 Parameters for RPRD
There are three parameters in RPRDE,

1) Number of bins - In RD, the data is discretized
by creating bins. If the number of bins is large we
get discretized data similar to the original data. If
the number of bins is small there is a large loss of
the information. We conducted preliminary exper-
iments with 2-10 bins and found that for different
datasets, the best classification results were obtained
at different number of bins, however it was in the
range of 3-6. Hence, in the experiments for all
the datasets, 5 bins were created. For each tree
in an ensemble, different 4 points from the training
dataset were selected randomly to create 5 bins.

2) Dimension d of the datasets created using RP -
Fern and Brodley [25] suggest “to our knowledge
it is still an open question how to choose the dimen-
sionality for a random projection in order to preserve
separation among clusters in general clustering algo-
rithms.” However, Dasgupta [37] shows that the
data from a mixture of K Gaussians can be projected
into just O(log K) dimensions while retaining the
approximate level of separation between clusters.
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TABLE 2
Average Classification Errors (in % ) on the Simulated Data with a Diagonal Concept

Bold numbers show the best performance. ‘+/-’ shows that the performance of RPRDE is statistically better/worse (by using the statistical test proposed in [36]) than
that algorithm. RPRDE ensembles perform similar to or better than other ensemble methods. P represents that the base classifier is unpruned J48, whereas U represents
that the base classifier is unpruned J48.

We selected d as 2(log2 m) where m is the number
of features. As in almost all datasets we tested,
number of classes (k) < number of features (m) and
it was assumed that each class probability distri-
bution was represented by a Gaussian distribution.
Factor 2 was taken to have a large dimension of the
projected data so that the most of the information
was preserved. There was no guarantee that with
this assumption, the correct value of d was obtained.
However, these new d features were added to origi-
nal features (discretized features) so even if these
new d features did not have all the information
of the dataset, their combination with original fea-
tures might improve the representational power of
decision trees.

3) Matrix for Random Projection - The elements
rij of Random Matrix R are often Gaussian dis-
tributed. Achlioptas [38] has shown that Gaussian
distribution can be replaced by a distribution such
as
rij =

√
3×(±1) with probability 1/6 each, or 0 with

2/3 probability
We used this matrix for RP in our experiments
as it has benefit of being easy to implement and
compute.

For fair comparative study, no attempt was made to
select the best parameters for different datasets. In sum-
mary, all the experiments were carried out with following
parameters;

• The number of bin was 5.
• The number of new features created by using RP was

2(log2 m), where m is the number of features.
• We used the matrix for RP as suggested by

Achlioptas [38] (discussed above) in our experi-
ments.

6.2 Controlled Experiments
As discussed in Section 4, univariate decision trees like
C4.5 have difficulty in learning a diagonal concept. This
experiment was carried to study the performance of RPRD
ensembles for learning a diagonal concept. A 10 dimen-
sional data having a 5 dimensional diagonal concept was
created for this purpose. ith feature of the data point x was
defined by xi, (i =1 to 10) where xi is a random number
between 0 to 1. Two classes were defined as

5∑

i=1

xi ≤ 5/2, (3)

and
5∑

i=1

xi > 5/2. (4)

2000 data points were created. Experiments were done
by using 5 × 2 cross-validation. Results are presented in
Table 2. Results indicate that RPRD ensembles perform sta-
tistically better than other popular ensemble methods (only
the RP ensemble was similar to RPRDE when the ensemble
size was 100). This shows that RPRD ensembles can learn
diagonal concepts very well. This vindicates our hypothesis
that RPRD ensembles have good representational power.

6.3 Comparative Study
In the second part of the experiments, we selected 21
pure continuous data sets from the UCI Machine Learning
Repository [39]. The information about datasets is pre-
sented in Table 3.

For the ensemble size 10, results are presented in Table 4.
RPRDE is statistically similar to or better than other pop-
ular ensemble methods (Bagging (11 Wins/10 Draws),
AdaBoost.M1(U) (8 Wins/13 Draws), AdaBoost.M1(P) (8
Wins/13 Draws), Multiboosting(U) (9 Wins/12 Draws),
Multiboosting(P) (8 Wins/13 Draws), Random Forests
(9 Wins/12 Draws) and RDT(17 Wins/4 Draws)). For
the ensemble size 100, results are presented in Table 5.
In this case, generally RPRD ensembles perform simi-
lar or better than the other popular ensembles meth-
ods, however the comparative advantage of RPRDE
decreases (Bagging (13 Wins/8 Draws), AdaBoost.M1(U)
(7 Wins/13 Draws/1 Loss), AdaBoost.M1(P) (7 Wins/13
Draws/1 Loss), Multiboosting(U) (6 Wins/14 Draws/1
Loss), Multiboosting(P) (7 Wins/13 Draws/1 Loss),
Random Forests (7 Wins/14 Draws) and RDT (12 Wins/
9 Draws)).

Experimental results suggest that RPRDE is compara-
tively better for small ensembles. This is true with the
ensembles consisting of accurate classifiers with reason-
able diversity [9]. We will discuss diversity and accuracy
properties of RPRD ensembles in (Subsection 6.5).

RPRDE is the combination of two data transformation
methods RP and RD. Our motivation to combine these
two approaches is that they are based on different mech-
anisms so their combination may produce good results.
Results indicate that for almost all the dataset (except Ring-
Norm data, RP ensembles performed statistically better
than RPRDE for the ensemble size 100) RPRDE is statis-
tically better than both of these methods or similar to the
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TABLE 3
Datasets Used in Experiments

These datasets are pure datasets.

better one. For example, for the ensemble size 10, for Letter,
Phoneme, Pendigit and Segment datasets, RPRDE is statis-
tically better than both the methods, whereas for Optical,
Spambase and Waveform40 datasets RPRDE is similar to
RD ensemble method and better than RP ensemble method,
and for the Ring-Norm dataset, RPRDE is similar to RP
ensemble method and better than RD ensemble method.
This behaviour suggests that RPRDE ensembles have got
best of both methods.

6.4 Noisy Data
As some of the real datasets have class noise, it is important
to study the robustness of RPRD ensembles for noisy data.
The performance of boosting methods degrade in the pres-
ence of the class noise. Dietterich [10] tested this effect by
introducing artificial noise in the class labels. AdaBoost has
difficulty in learning when the dataset is noisy. In each iter-
ation, the weight assigned to noisy data points increases so
in subsequent iteration it concentrates more on noisy data
points, it leads to overfitting of data. In this section, we
present our experimental results to study the sensitivity of
RPRDE to the class noise.

To add noise to the class labels, we followed the method
of Dietterich [10]. To add classification noise at a rate r, we

chose a fraction r of the instances and changed their class
labels to be incorrect choosing uniformly from the set of
incorrect labels. We carried out this exercise for noise levels
10% for all the datasets.

Results, when the size of the ensemble was 10, were
presented in Table 6. Results indicates that RPRDE is
quite robust to class noise. Their comparative advantage
increases (as compared to without noise data) for noisy
data. Except Bagging (performance of RPRDE is statis-
tically worse than Bagging for Spambase data) RPRDE
performed statistically similar or better than other popu-
lar ensemble methods (Bagging (12 Wins/8 Draws/1 Loss),
AdaBoost.M1(U) (16 Wins/5 Draws), AdaBoost.M1(P) (16
Wins/5 Draws), Multiboosting(U) (15 Wins/6 Draws),
Multiboosting(P) (14 Wins/7 Draws), Random Forests(14
Wins/7 Draws) and RDT(19 Wins/ 2 Draws)).

We also carried out same experiments when the size of
ensemble was 100. Results are presented in Table 7. RPRDE
performed statistically similar to or better than other pop-
ular ensembles methods (Bagging (12 Wins/9 Draws),
AdaBoost.M1(U) (14 Wins/7 Draws), AdaBoost.M1(P) (14
Wins/7 Draws), Multiboosting(U) (12 Wins/9 Draws),
Multiboosting(P) (12 Wins/9 Draws), Random Forests(9
Wins/12 Draws) and RDT (20 Wins/1 Draw)), however, its
comparative advantage decreases (as compared to ensem-
ble of size 10).

Results demonstrate that RPRD ensembles are quite
robust to the class noise. This is due to the fact that RPRDE
does not put so much emphasis on incorrectly classified
instances as AdaBoost.M1 does. Overfitting is one of the
weaknesses of oblique decision trees [21]. As RPRDE is
using random methods (RP and RD) to create datasets,
RPRDE avoids overfitting problem because of this. We
are creating ensembles of RPRD trees this also helps in
avoiding overfitting problem that is associated with single
oblique decision tree. RDT is based on a pure randomized
process, however, RDT did not perform well for the noisy
data. This is an interesting observation and need further
investigation. However, this is beyond the scope of this
paper.

6.5 The Study of Ensemble Diversity
Kappa-error plots [40] is a method to understand the
diversity-error behaviour of an ensemble These plots repre-
sent a point for each pair of classifiers in the ensemble. The
x coordinate is a measure of diversity of the two classifiers
Di and Dj known as the kappa (κ) measure (low values sug-
gest high diversity). The y coordinate is the average error
Ei,j of the two classifiers Di and Dj. When the agreement of
the two classifiers equals that expected by chance, κ = 0;
when they agree on every instance, κ = 1. Negative val-
ues of κ mean a systematic disagreement between the two
classifiers.

We draw kappa-error plots for five datasets (Pen,
Phoneme, Segment, Vowel, Waveform21) for different
ensemble methods. The scales of κ and Ei,j are same for each
given dataset so we can easily compare different ensemble
methods. We plotted results of one of the testing phase
of 5 × 2 cross-validation. The size of the ensembles was
10, so the total number of points was 45 in each plot.
Plots are presented in Fig. 6. RPRDE is not as diverse
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Fig. 6. Kappa-error plots for four ensemble methods, First column - RPRDE, second column - Bagging, third column - AdaBoost.M1, fourth
column - Multiboostinging and last column RF. x-axis - Kappa (κ), y-axis - the average error of the pair of classifiers. Axes scales are constant for
various ensemble methods for a particular dataset (each row). Lower κ represents a higher diversity. The plots suggest that RPRDE classifiers are
accurate with reasonable diversity. U represents that the base classifier is unpruned J48.

as AdaBoost.M1(U), MutiBoosting(U) and Random Forests,
however, generally RPRDE is more diverse than Bagging.
Classifiers created by using RPRDE and Bagging generally
have similar accuracy performance, whereas they are gen-
erally more accurate than all other ensemble methods. One
may conclude that RPRDE behaviour is midway between
these two types of methods, Bagging (classifiers; more accu-
rate, less diverse) and Adaboost.M1 (classifiers; less accu-
rate, more diverse). RPRDE is able to improve diversity, but
to a lesser degree than Adaboost.M1 and Random Forests,
without affecting accuracy of individual classifiers as
much as Adaboost.M1, Random Forests and MutiBoosting.
Kappa-error plots indicate that accurate classifiers with rea-
sonable diversity is the reason for the success of RPRDE.

6.6 The Study of Tree Growing Phase Time
We carried out experiments to study the tree growing phase
for different ensemble methods. Experiments were carried
out on five datasets (Pen, Phoneme, Segment, Vowel and
Waveform21). For each dataset, in each run of 5 × 2 cross-
validation, 100 trees were created. In other words, 1000 trees
were created for each dataset. The average tree growing
phase times for different ensemble methods for different
datasets are presented in Table 8. As expected the tree
growing phase time for RPRDE is the highest. As discussed
in subsection 5.2, RPRDE is using new RP features, the cre-
ation of these new features adds extra computational cost.
These new features are added with the discretized original
features. Hence, the feature size of the datasets in RPRDE is

TABLE 8
The Average Tree Growing Time in Sec., for Different Ensemble Methods

P represents that the base classifier is unpruned J48, whereas U represents that the base classifier is unpruned J48.
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TABLE 9
Number of RP Attributes at Top Levels of RPRD Trees

more, this also contributes to the high tree growing phase
time.

6.7 The Experimental Study of the Structure of
RPRD Trees

We discussed in subsection 5.1 that the success of RPRDE
is due to the fact that PRRD trees have good combina-
tion of RD attributes and RP attributes. In other words,
some of the RP features are selected at high levels of
RPRD trees. We carried out experiments to study the struc-
ture of RPRD trees. We studied how many RP features
were selected at high levels (top three and top five) of
RPRD trees. Experiments were carried out on five datasets
(Pen, Phoneme, Segment, Vowel and Waveform21). For
each dataset, in each run of 5 × 2 cross-validation, 100
trees were created. In other words, 1000 trees were cre-
ated for each dataset. The average results are presented
in Table 9. Results suggest that except Waveform21, all the
decision trees for all the other datasets have at least one RP
attribute in top three levels. For all datasets, decision trees
have atleast one RP attribue in top five levels. For three
datasets (Pendigits, Segment and Vowel), decision trees
have at least two attributes in top five levels. This suggests
that generally RPRD trees have a good combination of RP
attributes and RP attributes that helps in creating diverse
trees.

7 CONCLUSION AND FUTURE WORK

In the proposed work, we developed RPRDE method that
creates an ensemble of linear multivariate decision trees
by using a univariate decision tree algorithm. We pro-
pose the Random Disrectization (RD) process which creates
random discretized features. We showed that ensembles
created by RD trees have good representational power.
We combined two data transformation processes, Random
Projection (RP) and Random Discretization (RD), to cre-
ate RPRD ensembles. RPRD trees are linear multivariate
decision trees; hence, we expect that RPRD ensembles con-
sisting of RPRD trees have good representational power.
Experimental results on the synthetic dataset with a diago-
nal concept prove this point. The comparative study against
the other popular ensemble methods shows the superiority
of RPRDE. Results suggest that RPRDE is more useful for
small ensembles. Experiments also suggest that RPRDE is
robust to the noisy data. Ensembles of omnivariate decision
trees (using univariate decision tree algorithms) will be an

interesting research field as that will have more representa-
tional power (omnivariate decision trees can have nonlinear
decision surfaces). In the proposed ensemble method, new
diverse datasets are created, other classifiers instead of deci-
sion trees can be used on these datasets. The study of
various classifiers with these diverse datasets will be one
of the future directions of this work.
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