
Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 89

Using Ontologies to Synchronize Change in Relational
Database Systems
Waqas Ahmed
Department of Computer Science, COMSATS Institute of Information Technology, Pakistan
Department of Computer Forensics, Punjab Forensic Science Agency, Pakistan
wqs.ahmed@gmail.com

Muhammad Ahtisham Aslam
Department of Computer Science, COMSATS Institute of Information Technology, Pakistan
Faculty of Computing and Information Technology, King Abdul Aziz University, Saudi Arabia
ahtisham_a@hotmail.com

Antonio A. Lopez-Lorca, Jun Shen and Ghassan Beydoun
School of Information System and Technology, University of Wollongong, Australia
aall645@uowmail.edu.au, jshen@uow.edu.au, beydoun@uow.edu.au

Debbie Richards
Department of Computing, Macquarie University, Australia
deborah.richards@mq.edu.au

Ontology is a building block of the semantic Web. Ontology building requires a detailed domain
analysis, which in turn requires financial resources, intensive domain knowledge and time. Domain
models in industry are frequently stored as relational database schemas in relational databases. An
ontology base underlying such schemas can represent concepts and relationships that are present
in the domain of discourse. However, with ever increasing demand for wider access and domain
coverage, public databases are not static and their schemas evolve over time. Ontologies generated
according to these databases have to change to reflect the new situation. Once a database schema
is changed, these changes in the schema should also be incorporated in any ontology generated
from the database. It is not possible to generate a fresh version of the ontology using the new
database schema because the ontology itself may have undergone changes that need to be
preserved. To tackle this problem, this paper presents a generic framework that will help to generate
and synchronize ontologies with existing data sources. In particular we address the translation
between ontologies and database schemas, but our proposal is also sufficiently generic to be used
to generate and maintain ontologies based on XML and object oriented databases.

Keywords: Semantic Web, ontology, relational database schema
Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning – Knowledge

acquisition, H.2.4 [Database management]: Systems – Relational databases

Manuscript received: 8 April 2011
Communicating Editor: Rafael Valencia García

Copyright© 2011, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
The World Wide Web (WWW) was originally designed to display information in a human-readable
way (Shadbolt, Hall and Berners-Lee, 2006). It was up to the people accessing Web pages to

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 89

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 201190

interpret them using their own localized semantics at the time they access them. The forthcoming
generation of WWW, the semantic Web, will be oriented to be machine-understandable. Web
documents will include their own semantics and computers will be able to intelligently process the
information in them (Berners-Lee, Hendler and Lassila, 2001). Several authors have recently
explored applications of the Semantic Web to various domains such as customer relationship
manage ment (García-Crespo, Colomo-Palacios, Gómez-Berbís and Ruiz-Mezcua, 2010), e-
commerce (García-Sánchez, Valencia-García, Martínez-Béjar and Fernández-Breis, 2009),
multimedia contents annotation (Paniagua-Martín, García-Crespo, Colomo-Palacios and Ruiz-
Mezcua, 2011), e-learning (Chou, Wu, Li and Chen, 2009; Fernández-Breis, Castellanos-Nieves
and Valencia-García, 2009), internet access control (Fitzgerald, Foley and Foghlú, 2009; García-
Crespo, Gómez-Berbís, Colomo-Palacios and Alor-Hernández, 2011) or systems security (Lasheras,
Valencia-García, Fernández-Breis and Toval, 2009; Vorobiev and Bekmamedova, 2010). The
building blocks of this new Web are ontologies, understood as formal, explicit specifications of
shared conceptualizations (Studer, Benjamins and Fensel, 1998). Ontologies can be used in
knowledge-based systems and one of their most important features is their inference capabilities.
The ontology building process requires a deep understanding of the domain to identify concepts,
relationships between them and axioms defining the rules constraining the relationships. Ontology
languages, such as RDF (W3C, 2004a), RDFS (W3C, 2004b) or OWL (W3C, 2009), facilitate this
process but development still involves at least an ontology engineer, in charge of formalizing the
knowledge provided by the domain expert, who typically will not have skills in ontology develop -
ment. The development of ontologies is a costly and time consuming process. One way to reduce
this cost is to extract ontologies from existing databases. Currently most industrial and research data
are stored in relational databases. Usually a detailed domain analysis is performed at the time when
these relational databases are built. An automated approach having capability of transforming
information from a relational database into an ontology can speed up the process of ontology
building. Once generated, the ontology user may further populate it with instances or add more
domain details into it according to his or her needs.

Our starting point is a relational database’s schema (data model), which contains information
about concepts and relationships present in a domain of discourse. We use this information to
automatically extract an ontology. The challenge that we address in this paper is maintaining
consistency between such an ontology and an evolving/changing database where the schema
changes. This is quite a common problem in database applications, particularly where databases are
used to store data about an evolving domain, e.g. research data (Kupfer, Eckstein, Neumann and
Mathiak, 2006), and where a change in the schema is often a reflection of new understanding in the
domain. Under such circumstances, having a database that more accurately defines the domain and
incorporates latest changes in the domain model is a lot simpler if an ontology is previously used to
describe the old schema generated from the old database (Noy and Klein, 2004). Using an ontology
in the updating the schema of the database will help maintaining consistency of the database. This
can be easier undertaken by co-evolving the two representations, the database metadata and the
ontology, through careful maintenance procedures and consideration of any manual changes in the
ontology. This paper presents a framework to generate and then synchronize a generated ontology
with source database schema to ensure that changes in domain conceptualizations are captured in
any later database design as the domain itself is evolved.

The rest of this paper is structured as follows: Section 2 discusses related work highlighting
shortcomings of existing techniques in database maintenance when domains themselves evolve.
Section 3 shows how ontologies can be constructed from relational database metadata which later

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 90

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 91

in Section 4 will be used to construct a mechanism to detect and implement changes in the auto -
matically generated ontology. Section 5 describes a tool realization of the framework: DATAONTO,
an automated ontology generation and change synchronization plug-in for Protégé. Section 6 closes
the paper with conclusions and future work.

2. RELATED WORK
Using ontologies to maintain and manage the evolution of conceptual models in software systems
is not new. There are numerous examples on validation of conceptual models using ontologies. For
instance Shanks et al (2003) use a formal ontology to validate the choice of a specific suitable
language for conceptual modeling of a given domain. Benevides and Guizzardi (2009) propose an
Eclipse-based tool to build and automatically verify conceptual models developed in a language
(OntoUML) that uses a foundation ontology to extend UML. In Lopez-Lorca, Beydoun, Sterling
and Miller (2010) ontologies are used to properly propagate requirements analysis updates in the
require ments models focussing on the requirements activities of validation and verification as
characterised in Sadraei, Aurum, Beydoun and Paech (2007). In Beydoun, Low, Mouratidis and
Henderson-Sellers (2009) and Tran, Low and Beydoun (2006), ontologies are used to support
systems analysis and design.

Established software systems have their domain knowledge embedded in them. Some authors
advocate the use of ontologies to recover this implicit knowledge for improving the understanding
of the system or for maintenance purposes. Meng, Rilling, Zhang, Witte and Charland (2006)
propose an ontology-based method to support software maintenance. They argue that software
comprehension is essential for its maintenance, thus, they model the comprehension process by
means of an ontology. Reasoning mechanisms provide the user with suggestions of tools suitable
for certain comprehension tasks. Daga, Cesare, Lycett and Partridge (2005) tackle the problem of
renovation of legacy systems from a technology-independent point of view. They focus on using
ontologies to recover the business knowledge, which is an important asset for the company and is
often forgotten when legacy systems are adapted. Ontologies provide improved semantics, better
interoperability, less complexity and technology independence.

Along the same lines, but focusing on databases, several authors have developed tools to extract
ontologies from databases. Mukhopadhyay, Banik and Mukherjee (2007) present an approach to
construct RDF ontologies from existing databases. Their proposal uses RDF as ontology language
which is less expressive than OWL. This approach uses the database physical schema to construct
corresponding classes. As the physical schema has no associated semantics, the transformation may
result in an inaccurate representation of the domain. For example, if there is a bridge table in the
relational database then it will also be transformed into an RDF class. Our approach is more
expressive and keeps the semantics implicit in the database as it is based on OWL and extracts the
conceptual model from the database schema.

Cullot, Ghawi and Yetongnon (2007) present DB2OWL, a local automatic database to ontology
mapping tool that focuses on local ontology generation from relational databases. One shortcoming
with the approach presented is that it uses predefined table cases and maps directly physical schema
into an ontology. Another issue with the tool is that the object properties are defined but not added
to the class as restrictions. This implies that only the sufficient criteria to be the instance of a class
is provided but necessary and sufficient criteria are not given. Our proposal is more flexible as it
does not use predefined table cases, but uses an intermediate conceptual model to analyse the
database. It also defines object properties such as “has a”.

Trinkunas and Vasilecas (2007) present an approach to construct ontologies from relational

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 91

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 201192

databases using reverse engineering. The proposed approach converts a conceptual model into an
ontology but it requires an existing conceptual model as input. Most of the time the conceptual
models of operational databases are not available therefore, ontology generation will not be possible
in that case. Our approach is based as well on a conceptual model but it is designed to extract it from
the database schema, so no pre-existing conceptual model is required.

Upadhyaya and Kumar (2005) take an extended ER model as input to construct an ontology out
of it. As ontology is a relatively new construct as compared to relational databases, the relational
databases which are in operation often do not have associated models or supporting documentation.
Therefore, it is difficult to find the extended ER model and then transform it into an ontology.
Similarly to the approach of Trinkunas and Vasilecas (2007), in this work the authors rely on the
existence of a previous model.

Our approach is different from the analysed existing works in that it does not rely on existing
models, but builds a conceptual model representing the database, using the database schema. As we
are using OWL the semantics are preserved. And more importantly, unlike any of the related works,
we provide an automatic mechanism to evolve the ontology from changes in the original databases
while preserving manual changes made to the ontology.

3. ONTOLOGY GENERATION FROM RELATIONAL DATABASES
Ontology generation from a database requires knowledge of the relational database schema. This
section first discusses what schema information is read from the database then how this schema
information is mapped as ontology constructs. Before transforming the database schema into an
ontology, a mapping scheme is required that can perform transformations of database schema into
ontology elements. This mapping scheme is also discussed.

3.1 Database Schema to Conceptual Model Transformation
Database schemas contain information of tables, columns, columns’ datatype, primary and foreign
keys and other constructs such as stored procedures, views and triggers. All these details are
dependent on the RDBMS used to implement the database (Elmasri and Navathe, 2010). The
conceptual model of a database provides insight about different entities present in the domain of
discourse, their attributes and relationships (Felden and Kilimann, 2006). When a conceptual model
is transformed into a physical implementation schema, the semantics which are associated with the
conceptual model are lost (Trinkunas and Vasilecas, 2007). These semantics are very important from
the ontology’s point of view. An example of these lost semantics is transformation of a bridge table
that is a result of a many-to-many relationship between two entities. At the time of converting the
conceptual model into a relational database schema, a many-to-many relationship results in three
tables. The third table that represents this many-to-many relation consists of primary keys of two
participating entities as its attributes. These primary keys of individual participating entities con -
stitute a composite primary key in the bridge table (Connolly and Begg, 2004). This table did not
exist in the original domain model that was captured using conceptual modeling. If the ontology is
generated directly from this schema then it will certainly lose domain information like this therefore,
it is required to transform physical schema into corresponding conceptual representation.

The conceptual graph is a data model that represents higher level details of how data is stored
in a database (Chen, 1976). In a prototype implementation of the tool DATAONTO, this conceptual
data model is represented in the form of a directed label graph. Formally we can define this graph
G as G = {N, E}, stating that graph G is a finite set of labeled nodes N and labeled edges E. Each
node represents an entity in the database and edge represents the relationship between entities

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 92

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 93

(Trinkunas and Vasilecas, 2007). The direction of the edge represents the direction of the original
constraint present in the database. The label of the edge is the relationship name. Each edge is
written as a triplet E = [N1, α, N2] where N1 and N2 are the nodes that are connected by the edge
and α is the label of the edge. Figure 1 shows an excerpt of a conceptual graph, in which two nodes,
Student and Degree Program, are related to each other by means of the directed edge representing
the relationship is enrolled in.

Every node represents an entity in the database. A node has its unique name and attributes with
their datatype. These attributes are actually the columns of a database table with their datatype
values. An edge contains the node names that it is connecting and a label that represents the
relationship between the two nodes.

Before a model can be constructed, the information about the database schema (database meta data)
is required. The following information about each table is read before converting it into a model:

1. Name of table.
2. List of columns in the table along with their datatype.
3. List of primary keys.
4. List of foreign keys along with the names of tables in which these are primary keys.

Once this information is available, a conceptual graph model can be constructed from a database
table, T, using the following four Mapping Rules (MR) that have been logically described in Table 1:

MR1. Table T is said to be a bridge table if it connects tables T1 and T2 in such a way that
it has two distinct subsets of columns A1 and A2, each set belonging to the table T1 and T2

respectively. Attributes A1 and A2 are foreign and primary keys in T. This will be mapped in
the conceptual graph as two edges, one directed from table T1 to T2 and another from T2 to
T1. The label of these new edges is set to has a (Figure 2).

Figure 1: An example of a conceptual model

Figure 2: An example of the Mapping Rule 1 (MR1)

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 93

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 201194

MR2. Table T is said to be a subclass of table T1 if table T has a referential integrity
constraint with table T1 such that the primary key of table T1 is a foreign key in table T and
it is also a primary key in table T. This will be mapped in the conceptual graph as an edge
from table T1 to T labeled as is a (Figure 3).

MR3. If table T has a foreign key that is a primary key in the table T1 each instance of table
T1 is said to be related to multiple instances of T. This will be mapped in the conceptual
graph as an edge from T to T1 labeled as has a (Figure 4).

MR4. Each table T in the database is considered a node to be added to the conceptual graph.
Columns of every T with their associated datatype are added as attributes. Columns acting

Figure 3: An example of the Mapping Rule 2 (MR2)

Figure 4: An example of the Mapping Rule 3 (MR3)

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 94

Rule Id MR1

Determines Bridge table

Rule ∃ A1, A2 ∈ T /
A1 ∈ T1, A2 ∈ T2, (A1, A2) isPrimaryKey(T) and (A1, A2) isForeignKey(T)

Mapping Two edges has a from T1 to T2 and from T2 to T1 respectively

Rule Id MR2

Determines Class/subclass

Rule ∃ A1 ∈ T1, A2 ∈ T2 /
A1 isPrimaryKey(T1), A2 isPrimaryKey(T2), A2 isForeignKey(T2) and A1 = A2

Mapping Edge is a from T1 to T2

Rule Id MR3

Determines Relationship

Rule ∃ A1 ∈ T1, A2 ∈ T2 / A1 isForeignKey(T1), A2 isPrimaryKey(T2) and A1 = A2

Mapping Edge has a from T1 to T2

Rule Id MR4

Determines Node

Rule ∀Ti

Mapping A new node for each Ti.

Table 1: Summary of mapping rules between database schema and conceptual graph, being Ti tables of the
database and Ai columns of the tables Ti

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 95

as foreign keys in the database will not be added. If a primary key is also a foreign key, it
will be added as a node attribute (Figure 5).

3.2 Conceptual Model to Ontology Transformation
Once the database schema is read and transformed into a conceptual graph model, this graph model
can be used to construct the ontology. An ontology is formed by classes and properties. These
properties can be object properties and datatype properties. Object properties are used to represent
a relationship between two classes. Datatype properties describe a relationship between an

Figure 5: An example of the Mapping Rule 4 (MR4)

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 95

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 201196

individual and data values (W3C, 2009). If we want to construct an ontology from a relational data -
base conceptual model then we require a mapping scheme. This mapping scheme will tell which
relational database conceptual model element is transformed into what ontology constructs.

An entity (also referred to as an entity type) is a basic object of conceptual database model that
represents a thing which has independent physical or logical existence (Elmasri and Navathe, 2010).
In Connolly and Begg (2004) an entity type is defined as the group of objects that exists in the real
world and has the same properties. An ontology class defines a group of individuals that share some
common characteristics (W3C, 2009). It is in fact a set that contains individuals that fulfill certain
criteria (Horridge, Jupp, Moulton, Rector, Stevens and Wroe, 2007).

It is clear from the definitions of entity type and ontology class that both contain individuals
sharing some common properties or characteristics. Since a node in a conceptual model represents
an entity in a domain of discourse therefore, it may become a class in an ontology. We define the
first Ontology Mapping Rule (OMR) as:

OMR1. Each node in the conceptual graph is mapped as a class in the ontology. To define
necessary and sufficient criteria for being a member of the class, class will be an intersection
of all restrictions on its datatype and object properties.

A set of properties that completely define an entity type are called its attributes (Elmasri and
Navathe, 2010). Attributes have values that comprise the main part of the data stored in database
(Connolly and Begg, 2004). OWL datatype properties represent the relationship of an individual
with a data value. Keeping this similarity in mind, we can replace node attributes with OWL
datatype properties in the ontology. Therefore, we define the second ontology mapping rule as:

OMR2. All node attributes are mapped as datatype properties in the ontology. The range of
the datatype property is set to XML Schema Datatype (XSD) (W3C (2004c), (2004d), (2004e)),
the equivalent to an attribute’s datatype in a relational database. As attributes with the same
name may belong to more than one node, the node name has to be appended as prefix to the
attribute name.

Whenever an attribute of an entity type refers to another attribute of some other entity, then there
exists a relationship between these two entities. If an entity type can be mapped as an ontology class
then there is also a need to map relationships between entity types. These relationships can be
mapped by using object properties of the ontology. In OWL the object properties are used to
represent some relationships between classes. So relationships which exist in the conceptual
database model will be transformed into OWL object properties. An edge with label has a represents
a one-to-many relationship between the nodes it is connecting. This relationship can be mapped by
adding an object property in the OWL ontology. The third ontology mapping rule will be:

OMR3. If an edge with label has a connects node N1 with node N2 then an object property
OP named as hasN2 will be created in the ontology. Domain and range of property OP will
be set to N1 and N2 respectively. The property will also be made functional to make sure that
it connects only one instance at a time.

Entities can be specialized in the form of a specialization hierarchy. This hierarchy is very
important if these entities are to be transformed into an ontology. Each sub entity can be a subclass
of its corresponding specialized entity class. An edge with label is a is mapped as class/subclass
relation in the ontology. We define the fourth and last ontology mapping rule as:

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 96

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 97

OMR4. If an edge E with label is a connects two nodes N1 and N2 then in the ontology, N1

will be mapped as subclass of N2.

Table 2 logically describes the conceptual graph to ontology mapping rules.

4. DETECTION OF CHANGES IN A DATABASE SCHEMA AND IMPLEMENTATION
OF THESE CHANGES INTO AN ONTOLOGY

Public and research databases are not static and their schema keeps on changing (Kupfer et al,
2006). New tables are added, existing tables are deleted and new columns are added or deleted from
existing tables. If an ontology is generated from a database schema considering the fact that this
schema contains domain information then this change in schema will directly imply a change in the
domain model. Once the domain model is changed, the ontology representing a domain of discourse
should also be changed.

Once the ontology is generated from a database schema using the technique described in Section
3, this database schema may go through changes. To keep the generated local ontology consistent
with the database schema, it is necessary to detect and then implement schema changes into the
existing ontology. A database schema may go through the following changes:

1. Addition of new table(s).
2. Deletion of table(s).
3. Addition of column(s) in table(s).
4. Deletion of column(s) in table(s).
5. Change of datatype of column(s).
6. Addition of relationship between tables.
7. Deletion of relationship between tables.

The process of change detection begins by constructing a conceptual model graph from the
changed database schema. The construction of a conceptual graph is the same as discussed in
Section 3.1. Once we have the new conceptual model, it is compared with the previous version of
the conceptual model that was used to generate the ontology. The difference between two models
represents the changes in schema. These changes are maintained in a change set. This change set is
then used to map these changes into the ontology. In what follows we define the Change Detection
Rules (CDR), which are the operators that we use to detect differences between conceptual models
(summarized in Table 3). GN and GO symbolize the newly generated and old graph model,
respectively.

CDR1. If a node N exists in GO but is not present in GN then it has been deleted from the
new version of the database.

Rule ID Conceptual Graph Ontology

OMR1 Node Class

OMR2 Node attribute Datatype property

OMR3 Edge has a from N1 to N2 Functional object property, hasN2, with N1 as
domain and N2 as range

OMR4 Edge is a from N1 to N2 N1 subclass of N2

Table 2: Summary of ontology mapping rules

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 97

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 201198

CDR2. If a node N exists in GN but is not present in GO then it has been added to the new
version of the database.

CDR3. If a node attribute A is part of node N in GN but the same node N does not have such
attribute A in GO then A has been added to table N in the new version of the database.

CDR4. If a node attribute A is part of node N in GO but the same node N does not have such
attribute A in GN then A has been removed from table N in the new version of the database.

CDR5. If a node N having an attribute A exists in both GN and GO but the datatype of A in
GN is D1 and the datatype of A in GO is A2 and A1 is different from A2, then the datatype of
A has changed in the new version of the database.

CDR6. If an edge E, labeled L connects two nodes N1 and N2 in GN but the same edge does
not exist in GO then E represents a newly added relationship between nodes N1 and N2 in the
new version of the database.

CDR7. If an edge E, labeled L connects two nodes N1 and N2 in GO but the same edge does
not exist in GN then E represents a deleted relationship between nodes N1 and N2 in the new
version of the database.

4.1 Change Set
The above described CDRs can be used to detect changes in the database schema. Once changes are
detected they are stored in the form of a change set. This change set is then used to implement these
changes into the ontology. A change set consists of following items:

1. A conceptual graph model.
2. Names of nodes to be deleted.
3. Names of edges to be deleted.
4. Names of attributes to be deleted along with their node names.
5. Names of attributes whose datatypes are to be changed along with their class name and new

datatype value.

Rule ID Detects Rule

CDR1 Deleted table ∃ N1 ∈ GO, ~∃ N2 ∈ GN / N1 = N2

CDR2 Added table ~∃ N1 ∈ GO, ∃ N2 ∈ GN / N1 = N2

CDR3 Added column A ∉ N / N ∈ GO and A ∈ N / N ∈ GN

CDR4 Deleted column A ∈ N / N ∈ GO and A ∈ N / N ∈ GN

CDR5 Change of datatype A1 ∈ N / N ∈ GO and A2 ∈ N / N ∈ GN and
A1 = A2 and DataType(A1) ≠ DataType(A2)

CDR6 Addition of relationship ~Connects(E, N1, N2) / E, N1, N2 ∈ GO and
Connects(E, N1, N2) / E, N1, N2 ∈ GN

CDR7 Deletion of relationship Connects(E, N1, N2) / E, N1, N2 ∈ GO and
~Connects(E, N1, N2) / E, N1, N2 ∈ GN

Table 3: Change detection rules. GO and GN represent the old and new conceptual graphs respectively.
N represents nodes of the graph (similarly tables in the database). A represents attributes of the nodes

(similarly columns of tables in the database).

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 98

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 99

One thing to be noted here is that the above mentioned list does not contain the names of newly
added nodes and edges but it contains a graph model. This graph model is actually a subset of
changes that represents newly added nodes and edges. Figure 6 shows the process of constructing
a change set.

Before a change is made into ontology it is necessary to know which conceptual model element
was mapped to what ontology construct. Once the changes to be made are identified, they can now
be implemented into the ontology. For this purpose we may use the rules specified in Section 3.1.
It is clear that a node in the graph model is mapped as a class, an edge is mapped as a relationship
and an attribute is mapped as datatype properties. In what follows we present the Change Mapping
Rules (CMR) to implement changes into an ontology.

CMR1. The conceptual graph present in the change set will be mapped in a similar way to
the graph transformation specified in Section 3.2. This will add new classes and relationships
between these new classes to the ontology.

CMR2. For each node present in the list of nodes to be deleted in the change set, the
corresponding class in the ontology will be deleted. All datatype properties of this class will
also be deleted.

CMR3. For each edge E labeled as has a connecting nodes N1 and N2, in the list of new
edges in the change set, an object property with domain N1 and range N2 will be added to N1.
If edge label is is a then class corresponding node N1 will be made subclass of class repre -
sented by N2.

CMR4. For each edge E labeled as has a connecting nodes N1 and N2, in the list of edges to
be deleted in the change list, the object property corresponding to this edge in the ontology
will be deleted. If the edge label is is a then the class/subclass relation between N2 and N1

will be removed.

CMR5. For each element in the list of attributes to be added in the change set, a new
datatype property P will be added to the class corresponding to the node the attribute belongs
to. The range of datatype property will be set as the XSD equivalent of SQL datatype.

CMR6. For each element in the list of attribute datatypes to be changed in the change set,
the range of the datatype property P that corresponds to that attribute in the ontology will be
changed to new XSD equivalent of SQL datatype.

CMR7. For each element in the list of attributes to be deleted in the change set, the datatype
property P that represents the attribute in ontology will be deleted.

Once these changes have been implemented into the ontology, the new graph model GN is kept
for future change detection and implementation purposes.

5. DATAONTO: A CONVERSION AND SYNCHRONIZATION PLUG-IN FOR PROTÉGÉ
DATAONTO (2009) is a plug-in for the widely used ontology editor, Protégé (2011), developed
using the presented framework. Protégé-based tools have been widely used before, e.g. Girardi and
Leite (2008) present a Protégé-based tool for the development of families of Multi Agent Systems
(MAS). Hajnal, Pedone and Varga (2007) present a Protégé plug-in to develop MAS models.
Knublauch (2004) advocates the use of Protégé to develop applications for the semantic Web
highlighting quick prototyping as a key appeal. Similar to those works, our plug-in tool produces

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 99

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011100

an OWL-DL ontology. It transforms a database schema into an OWL-DL ontology using the
semantic mappings described in Section 3. Once the ontology is generated, DATAONTO also looks
for any database schema changes in the source database and implements those in the existing
ontology. JAVA JDBC API (ORACLE, 2010) is used for reading the database schema and Jena 2.1

Figure 6: Process of change set construction

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 100

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 101

(Jena, 2010) is utilized for writing or reading ontology files. Some important features of
DATAONTO are the following:

– DATAONTO requires only database location and access permissions as input. It automatically
processes its schema and transforms it into a conceptual model.

– When a conceptual domain model is transformed into a database physical schema, the associ -
ated semantics are lost (Upadhyaya and Kumar, 2005). DATAONTO, to acquire these implicit
semantics, automatically transforms physical schema into a conceptual graph model. This graph
model contains the relationships and attributes of entities. Association and generalization of
entities is expressed in a graph model using edges having labels has a and is a.

– DATAONTO uses OWL-DL as ontology definition language. This provides more expressive -
ness and inference capabilities as compared to OWL-Lite (W3C, 2009). Class hierarchies are
computed and specified in the output ontology. Moreover, classes are defined as intersections of
restrictions on object and data properties.

– To make an ontology consistent with a database, existing approaches have only one possible
solution, i.e. regenerate the ontology from the changed database schema. This regeneration of
ontology will result in a loss of all manual annotations in the ontology. DATAONTO detects
changes in database schema that are not part of the ontology. These changes are computed by
comparing the domain model, from which the ontology was generated, with the changed domain
model. Detected changes are maintained in the change set

– DATAONTO automatically implements detected changes into the ontology.

DATAONTO Java implementation is platform independent. JDBC is an open source solution
provided by Sun is used for database connectivity and schema reading purposes. This enables
database independent connectivity through provision of specific APIs that give access to multiple
data sources. For the purpose of manipulating OWL-DL ontologies, Jena 2.1 API is used. Jena is an
open source, well maintained Java framework that can be used to build semantic Web applications.
It supports RDF, RDFS, OWL and SPARQL along with a rule based inference engine.

The architecture of DATAONTO consists of two modules (Ontology Generator and Change
Mapper). The Ontology Generator module generates a conceptual graph model from a given
database schema along with its associated OWL-DL ontology. The technique and mapping rules to
transform the database schema into a conceptual graph model and then this conceptual graph model
into an OWL-DL ontology have been described in Section 3. Figure 7 shows the architecture of the
Ontology Generator.

The Change Mapper module of DATAONTO detects changes in a database schema and then
maps back these changes into the ontology that was generated from that very database. Figure 8
details the architecture of the Change Mapper module.

The Java implementation of DATAONTO consists of three packages:

1. Schema Reader. This package contains classes which establish a database connection, read the
database schema, and identify and separate table keys, columns and their datatype.

2. Graph Generator. This package consists of a graph class and a graph generator. The graph
generator class takes database table information manipulated by the Schema Reader package
and transforms it into a conceptual graph model.

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 101

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011102

3. Ontology Generator. This package implements two major functionalities of DATAONTO: The
generation of a new ontology from graph model; and the implementation of changes into an
existing ontology. The change set is also processed by this package in such a way that changes
which are part of the change set are implemented into the existing ontology using the change
mapper function of the Ontology Generator package.

DATAONTO can be used to generate a new ontology from a database or synchronize changes
between a database schema and already generated ontology from the same database. For the
purpose of detecting changes between the database schema and ontology, a conceptual graph model
that represents the updated state of the ontology is required as input. This existing conceptual graph
model and the model generated from the database schema are compared and then changes are
detected and mapped into the ontology.

Figure 7: Architecture of the Ontology Generator module

Figure 8: Architecture of the Change Mapper module

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 102

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 103

Setting DATAONTO up in Protégé as a plug-in is a very simple task. DATAONTO is first
included in the plug-in directory inside the Protégé installation directory. To display DATAONTO
as an option tab in Protégé, in the preferences window of OWL, select the DATAONTO plug-in (as
shown in Figure 9). DATAONTO will then become visible in the Protégé tab list and will be ready
to use.

6. CONCLUSIONS, DISCUSSION AND FUTURE WORK
One of the problems that delay the development of the awaited semantic Web is the lack of
ontologies. Building ontologies is an onerous task and requires a great deal of domain knowledge.
Much knowledge is implicitly stored in existing applications, such as databases. In this paper, we
focussed on how to extract this knowledge from relational databases. This is significant because of
the widespread use of relational database systems. However, our proposal is sufficiently generic to
be also applied to other types of databases. In this context, we presented a generic framework for
ontology generation and change synchronization from relational databases. Our proposed
framework is supported by implementing a tool DATAONTO that uses all the above mentioned
various components to automatically build and synchronize changes via the use of an ontology into
the relational database. DATAONTO automatically reads a relational database’s schema, converts
it into a conceptual graph model to acquire lost semantics and then maps it into an ontology using
the mapping rules. Once this ontology is thus made available, the user can check the source database
schema for changes and these changes are detected by comparing the two conceptual models. If

Figure 9: Selecting DataOntoTab to become a Protégé plug-in.

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 103

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011104

changes are found they are implemented in the database and the existing ontology (for reference in
any future change cycles).

We plan to validate our approach in a controlled experiment consisting of two stages. In the first
stage we will provide a group (G1) of information systems students with a database depicting
characteristics and components of smartphones. We will ask them to use our proposed mechanism
to automatically generate an ontology (O1) from the database schema and, later on, manually add
new knowledge to it. In the second stage we will give the same students (G1) a new version of the
database, in which some tables and relations have changed because of new developments in the
state of the art of smartphones. They will be asked to use the evolution mechanism presented in this
paper to automatically generate an updated version of the ontology (O2) matching the changes in
the database but without losing the manual changes made to the old version of the ontology. In
parallel, a second group of students (G2, disjoint with G1) will be given specifications to develop,
using traditional ontology engineering techniques ontologies O1 and O2. To evaluate the results of
the experiment, we will compare the ontologies developed by G1 and G2, paying special attention
to the feedback of the students in terms of developing time, ease of development and usability of
the mechanism. We have chosen the smartphone domain because it is a highly dynamic field. Every
day new phones are released making obsolete devices that are only months-old. Semantic web
applications in this domain would have to tackle the problem of how to keep updated their
smartphone specification ontologies in an ever changing market. Our experiment replicates this
scenario realistically.

We are currently working on other directions as well to extend our approach. We plan to extend
the mechanisms presented in this paper to identify mapping rules for XML and object oriented
database schema so that ontologies can also be generated from them. We are developing a stable
release of DATAONTO as a plug-in for widely used ontology editor Protégé. We aim to have
DATAONTO as a general tool that can generate up-to-date ontology skeletons that are accurate and
domain specific from any data source.

REFERENCES
BENEVIDES, A.B. and GUIZZARDI, G. (2009): A model-based tool for conceptual modeling and domain ontology

engineering in OntoUML. Proceedings of International Conference on Enterprise Information Systems.
BERNERS-LEE, T., HENDLER, J. and LASSILA, O. (2001): The semantic web. Scientific American.
BEYDOUN, G., LOW, G., MOURATIDIS, H. and HENDERSON-SELLERS, B. (2009): A security-aware metamodel for

multi-agent systems. Information and Software Technology (51)5: 832–845.
CHEN, P.P-S. (1976): The entity-relationship model—Toward a unified view of data. ACM Transactions on Database Systems

(1)1: 9–36.
CHOU, P-H., WU, M-J., LI, P-H. and CHEN, K-K. (2009): Accessing E-Learners’ knowledge for personalization in E-

Learning environment. Journal of Research and Practice in Information Technology (41)4: 295–318.
CONNOLLY, T.M. and BEGG, C.E. (2004): Database Systems: A Practical Approach to Design, Implementation and

Management, Addison Wesley.
CULLOT, N., GHAWI, R. and YETONGNON, K. (2007): DB2OWL: A tool for automatic database-to-ontology mapping.

Proceedings of 15th Italian Symposium on Advanced Database Systems (SEBD 2007): 491–494.
DAGA, A., CESARE, S.D., LYCETT, M. and PARTRIDGE, C. (2005): An ontological approach for recovering legacy

business content. Proceedings of 38th Annual Hawaii International Conference on System Sciences: 224–232.
DATAONTO (2009): DATAONTO: A database to OWL conversion and synchronization plug-in for Protégé. https://source

forge.net/projects/dataonto/. Accessed 28 March 2011.
ELMASRI, R. and NAVATHE, S. (2010): Fundamentals of Database Systems, Addison Wesley.
FELDEN, C. and KILIMANN, D. (2006): Deployment of ontologies in business intelligence systems. Proceedings of 8th

International Conference on Enterprise Information Systems: Databases and Information Systems Integration (ICEIS
2006).

FERNÁNDEZ-BREIS, J.T., CASTELLANOS-NIEVES, D. and VALENCIA-GARCÍA, R. (2009): Measuring individual
learning performance in group work from a knowledge integration perspective. Information Sciences (179)4: 339–354.

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 104

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 105

FITZGERALD, W.M., FOLEY, S.N. and FOGHLÚ, M.Ó. (2009): Network access control configuration management using
semantic web techniques. Journal of Research and Practice in Information Technology (41)2: 99–117.

GARCÍA-CRESPO, Á., COLOMO-PALACIOS, R., GÓMEZ-BERBÍS, J.M. and RUIZ-MEZCUA, B. (2010): SEMO: A
framework for customer social networks analysis based on semantics. Journal of Information Technology, (25)2: 178–188.

GARCÍA-CRESPO, Á., GÓMEZ-BERBÍS, J.M., COLOMO-PALACIOS, R. and ALOR-HENÁNDEZ, G. (2011):
SecurOntology: A semantic web access control framework. Computer Standards & Interfaces (33)1: 42–49.

GARCÍA-SÁNCHEZ, F., VALENCIA-GARCÍA, R., MARTÍNEZ-BÉJAR, R. and FERNÁNDEZ-BREIS, J.T. (2009): An
ontology, intelligent agent-based framework for the provision of semantic web services. Expert Systems with Applications
(36)2 Part 2: 3167–3187.

GIRARDI, R. and LEITE, A. (2008): A knowledge-based tool for multi-agent domain engineering. Knowledge-Based Systems
(21)7: 604–611.

HAJNAL, A., PEDONE, G. and VARGA, L. (2007): Ontology-driven agent code generation for home care in Protégé.
Proceedings of 10th International Protégé Conference.

HORRIDGE, M., JUPP, S., MOULTON, G., RECTOR, A., STEVENS, R. and WROE, C. (2007): A practical guide to building
OWL ontologies using Protégé 4 and CO-ODE yools. http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
resources/ProtegeOWLTutorialP4_v1_1.pdf. Accessed 21 March 2011.

JENA (2010): Jena – A semantic web framework for Java. http://jena.sourceforge.net/. Accessed 21 March 2011.
KNUBLAUCH, H. (2004): Ontology-driven software development in the context of the semantic web: An example scenario

with Protege/OWL. Proceedings of 1st International Workshop on the Model-Driven Semantic Web.
KUPFER, A., ECKSTEIN, S., NEUMANN, K. and MATHIAK, B. (2006): A coevolution approach for database schemas

and related ontologies. Proceedings of 19th IEEE Symposium on Computer-Based Medical Systems (CBMS’06).
LASHERAS, J., VALENCIA-GARCÍA, R., FERNÁNDEZ-BREIS, J.T. and TOVAL, A. (2009): Modeling reusable security

requirements based on an ontology framework. Journal of Research and Practice in Information Technology (41)2:
119–133.

LOPEZ-LORCA, A., BEYDOUN, G., STERLING, L. and MILLER, T. (2010): An ontology-mediated validation process of
software models. Proceedings of International Conference on Information Systems Development.

MENG, W. J., RILLING, J., ZHANG, Y., WITTE, R. and CHARLAND, P. (2006): An ontological software comprehension
process model. Proceedings of 3rd International Workshop on Metamodels, Schemas, Grammars, and Ontologies for
Reverse Engineering.

MUKHOPADHYAY, D., BANIK, A. and MUKHERJEE, S. (2007): A technique for automatic construction of ontology from
existing database to facilitate semantic web. Proceedings of 10th International Conference on Information Technology,
(ICIT 2007): 246–251.

NOY, N.F. and KLEIN, M. (2004): Ontology evolution: Not the same as schema evolution. Knowledge and Information
Systems (6)4: 428–440.

ORACLE (2010): The Java database connectivity (JDBC). http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
136101.html. Accessed 21 March 2011.

PANIAGUA-MARTÍN, F., GARCÍA-CRESPO, Á., COLOMO-PALACIOS, R. and RUIZ-MEZCUA, B. (2011): SSAAMAR:
Semantic annotation architecture for accessible multimedia resources. IEEE Multimedia (18)2: 16–25.

PROTÉGÉ (2011): The Stanford Center for Biomedical Informatics Research at the Stanford University School of Medicine
Protégé. http://protege.stanford.edu/. Accessed 21 March 2011.

SADRAEI, E., AURUM, A., BEYDOUN, G. and PAECH, B. (2007): A field study of the requirements engineering practice
in Australian software industry. Requirements Engineering (12)3: 145–162.

SHADBOLT, N., HALL, W. and BERNERS-LEE, T. (2006): The semantic web revisited. IEEE Intelligent Systems (21)3: 96–101.
SHANKS, G., TANSLEY, E. and WEBER, R. (2003): Using ontology to validate conceptual models. Communications of the

ACM (46)10: 85–89.
STUDER, R., BENJAMINS, V.R. and FENSEL, D. (1998): Knowledge engineering: Principles and methods. IEEE

Transactions on Data and Knowledge Engineering (25)122: 161–197.
TRAN, N., LOW, G. and BEYDOUN, G. (2006): A methodological framework for ontology centric agent oriented software

engineering. International Journal of Computer Systems Science and Engineering (21)2: 117–132.
TRINKUNAS, J. and VASILECAS, O. (2007): Building ontologies from relational databases using reverse engineering

methods. Proceedings of International conference on Computer systems and technologies (CompSysTech ‘07).
UPADHYAYA, S.R. and KUMAR, P.S. (2005): ERONTO: a tool for extracting ontologies from extended E/R diagrams.

Proceedings of ACM symposium on Applied computing (SAC 05): 666–670.
VOROBIEV, A. and BEKMAMEDOVA, N. (2010): An ontology-driven approach applied to information security. Journal

of Research and Practice in Information Technology (42)1: 61–76.
W3C (2004a): RDF Primer. http://www.w3.org/TR/rdf-syntax/. Accessed 22 March 2011.
W3C (2004b): RDF Vocabulary Description Language 1.0: RDF Schema. http://www.w3.org/TR/2004/REC-rdf-schema-

20040210/. Accessed 22 March 2011.
W3C (2004c): XML Schema Part 0: Primer Second Edition. http://www.w3.org/TR/xmlschema-0/. Accessed 21 March 2011.
W3C (2004d): XML Schema Part 1: Structures Second Edition. http://www.w3.org/TR/xmlschema-1/. Accessed 21 March

2011.

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 105

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011106

W3C (2004e): XML Schema Part 2: Datatypes Second Edition. http://www.w3.org/TR/xmlschema-2/. Accessed 21 March
2011.

W3C (2009): OWL 2 Web Ontology Language Document Overview. http://www.w3.org/TR/owl2-overview/. Accessed 21
March 2011.

BIOGRAPHICAL NOTES
Waqas Ahmed is working as a computer forensic scientist at Punjab Forensic
Science Agency, Lahore, Pakistan. He is an MS in Computer Science with
special ization in software engineering from COMSATS Institute of Information
Technology, Lahore. His research interests include computer foren sics, mobile
phone forensics, network security, social semantic networks and semantic web.
He also enjoys RC- model flying and cricket in his free time.

Muhammad Ahtisham Aslam is working as assistant professor at Information
Systems Department, King Abdul Aziz University, Jeddah, Saudi Arabia. He
has been working as senior staff researcher at Artificial Intelligence Centre,
Malaysian Institute of Microelectronics Systems (MIMOS), Kuala Lumpur,
Malaysia. He also has been working as assistant professor at COMSATS
Institute of Information Technology, Pakistan. He did his PhD from University
of Leipzig, Germany. He has several International and local publications in
the area of semantic web and web services. His research interests are semantic
web, semantic web services, web 2.0 and social semantic network.

Antonio A. Lopez-Lorca holds a degree in computer science from University
of Murcia in Spain. Currently he is a PhD candidate and lecturer at the School
of Information Systems and Technology at the University of Wollongong in
Australia. In his PhD, funded by the Australian Research Council, he studies
the validation of multi agent systems models using ontologies. He is co-author
of several papers in international journals and conferences. His research
interests include multi agent systems, artificial intelligence, knowledge
management, ontology modeling and reasoning and software engineering.

Jun Shen (SnrM'06) was awarded PhD in 2001 at Southeast University, China.
He held positions at Swinburne University of Technology in Melbourne and
University of South Australia in Adelaide before 2006. He is senior lecturer at
University of Wollongong in Wollongong, NSW Australia. He has published
more than 60 papers in journals and conferences in computer science and
information system area. His expertise is on web services and semantic web.
He has been editor, PC chair, guest editor, PC member for numerous journals
and conferences published by IEEE, ACM, Elsevier and Springer. He was a
chair of Education Chapter of IEEE NSW section since 2007.

Waqas Ahmed

Muhammad Ahtisham
Aslam

Antonio A.
Lopez-Lorca

Jun Shen

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 106

Using Ontologies to Synchronize Change in Relational Database Systems

Journal of Research and Practice in Information Technology, Vol. 43, No. 2, May 2011 107

Dr Ghassan Beydoun received a degree in computer science and a PhD
degree in knowledge systems from the University of New South Wales. He is
currently a senior lecturer at the School of Information Systems and
Technology at the University of Wollongong and an adjunct senior research
fellow at the School of Information Systems, Management and Technology at
the University of New South Wales. He has authored more than 90 papers for
international journals and conferences. He is currently working on a project
sponsored by an Australian Research Council Discovery Grant to investigate
the best uses of ontologies in developing methodologies for distributed
intelligent systems. His other research interests include multi agent systems
applications, ontologies and their applications, and knowledge acquisition.

Debbie Richards is a professor in the Computing Department at Macquarie
University in Sydney. She has been interested in expertise and knowledge
management from a theoretical and practical point of view since the early 80s.
This was initially inspired by her work in industry with experts from various
commercial and retail domains and explored further in her Masters and PhD
theses, following completion of a Bachelor of Business. While much of
Debbie’s research is within the field of artificial intelligence she is keen to
develop systems that people are able to use and which make a difference to
practice in industry.

Ghassan Beydoun

Debbie Richards

JRPIT43.2.QXP_Layout 1 7/12/11 4:27 PM Page 107

