

Abstract—In Content-Based Image Retrieval systems it is

important to use an efficient indexing technique in order to perform

and accelerate the search in huge databases. The used indexing

technique should also support the high dimensions of image features.

In this paper we present the hierarchical index NOHIS-tree (Non

Overlapping Hierarchical Index Structure) when we scale up to very

large databases. We also present a study of the influence of clustering

on search time. The performance test results show that NOHIS-tree

performs better than SR-tree. Tests also show that NOHIS-tree keeps

its performances in high dimensional spaces. We include the

performance test that try to determine the number of clusters in

NOHIS-tree to have the best search time.

Keywords—High-dimensional indexing, k-nearest neighbors

search.

I. INTRODUCTION

HERE is a need for content-based image retrieval systems

in many fields such as geography, security and criminal

picture identification system. To implement a CBIR

system two areas are involved which are image processing and

similarity search. Image processing is the automatic

description of the images; it consists of extracting from an

image its visual properties (form, color, texture…). These

properties are represented as multidimensional vectors called

descriptors [1]. To find the images similar to a query image, a

similarity search such k- nearest neighbors is made for each

descriptor of the query image. Many similarity searches are

carried out: as many searches as descriptors characterizing the

image query. The use of a data structure to index the

descriptors database is essential.. The need for an efficient

indexing technique becomes a major concern for two reasons:

the large quantity of images and the high dimensionality of

descriptors.Existing indexing techniques work well with low-

dimensional descriptors. However, their performance degrades

when the dimension of descriptors increases. This

phenomenon is known as the curse of dimensionality [2].The

rest of this paper is organized as follows. Section 2 discusses

the related work. Section 3 describes the indexing technique

NOHIS-tree. Section 4 evaluates performance of NOHIS-tree;

it is compared to sequential scan, PDDP- tree and SR-tree.

SR-tree has been chosen because it is a multidimensional

index proposed recently which still attracts the attention [3].

Finally, section 5 concludes the paper.

II. RELATED WORK

Obtaining a high-dimensional index can be made by using

traditional techniques of indexing such as R-tree [4], or by

M. Taileb is with Information Technology department, King Abdul-Aziz

University, Jeddah, KSA (e-mail: mtaileb@kau.edu.sa).

S. Touati, is with King Saud University, Riyadh, KSA (e-mail:
stouati@ksu.edu.sa).

using a clustering algorithm to form clusters or groups of

descriptors, and the clusters are supported by a hierarchical

structure, as an example BIRCH use CF-tree [5], DBSCAN

use R*-tree [6] and X-tree [7]. Many high-dimensional index

structures have been proposed, the most known and used are

data-partitioning based index structure such as SS-tree [8],

SR-tree [9], X-tree, considered as extensions of R-tree, and

space-partitioning based index structure such as k-d-B-tree

[10], hB-tree [11], and LSDh-tree [12] derived from kd-tree

[13]. The R-tree-based index structures suffer from

overlapping between bounding regions and the low fanouts,

this influence negatively on the results of query processing.

The kd-tree based index structures drawbacks are essentially

the no guarantee of using allocated space; this led to the

consultation of few populated or empty clusters.

Taking into account drawbacks cited above, and with an

aim to accelerate nearest neighbors’ search, the high

dimensional index technique called NOHIS was proposed

[14]. It is composed of two phases:

- The first offline phase consists in gathering descriptors in

clusters; the clustering algorithm used is the Principal

Direction Divisive Partitioning (PDDP) [15]. It’s one of the

divisive hierarchical clustering algorithms; it divides data

recursively into two sub-clusters by using the hyper-plane

orthogonal to the principal direction derived from the

covariance matrix and passing through the cluster center to

divide. A binary not balanced tree is obtained at the end of the

clustering process. The contribution consists of using

minimum bounding rectangle (MBR) avoiding overlap, MBRs

are directed according to the principal direction (principal

component) used in the clustering algorithm to divide a cluster

into two sub-clusters. We call NOHIS-tree, the tree obtained

by using PDDP, in which we use non overlapping rectangles.

- The second online phase is the step during which the

interrogation of the obtained index is made by a nearest

neighbors search carried out on the NOHIS-tree. The search

algorithm is adapted to the used MBRs.

III. THE NOHIS-TREE

The existing multi-dimensional indexing techniques can be

divided in two groups according to the partitioning strategy,

the data-partitioning and the space-partitioning based index

structure.

When the nearest neighbors search is applied on a data-

partitioning index, additional clusters are visited due to the

overlapping between the bounding forms (spheres or

rectangles). In the case of the space-partitioning index;

consultation of few populated or empty clusters is extremely

probable.

By using NOHIS, the overlapping is avoided and the quality

of clusters is preserved. This can be explained by the

following facts:

Mounira Taileb, Sami Touati

NOHIS-Tree: High-Dimensional Index

Structure for Similarity Search

T

World Academy of Science, Engineering and Technology 59 2011

518

user
Highlight

user
Highlight

user
Highlight

1- The clustering algorithm forms clusters by using data

dispersion, by guaranteeing the possibility to avoid empty and

few populated clusters by fixing a minimal threshold for the

cluster size (number of vectors contained in the node).

2- The direction of the two MBRs according to the principal

direction ensures that there is no overlapping between them.

Before detailing the suggested method, we indicate by data the

totality of multidimensional descriptors.

A. Offline phase

The phase offline of the suggested method can be

represented in three principal stages:

1 - Data constituting the initial cluster is divided into two sub-

clusters using the hierarchical clustering algorithm PDDP

[12]. Division is made by the hyper-plane orthogonal to the

first principal component passing through the cluster center to

divide. The principal component corresponds to the first

principal direction carried by the first eigenvector of the

matrix COV given by (1) associated to its largest eigenvalue.

M(n x m) represents the matrix of data to be clustered, m is the

size of data, n their dimension and w the center of data given

by (2):

 ��� � �� � 	
��� � � 	
��� (1)
 	 �
� . ��
 � �� � � � ��� �
� . �.
 (2)

 � �1,1, … . . ,1��

Now let U be the first eigenvector of the matrix COV and ���� the associated eigenvalue. Let us consider a normalized

vector X. The dispersion of the data, included in the matrix M,

with respect to X can be calculated as following:

 �� � |�� � 	
����|�
 � ���� � 	
���� � 	
����

 � ������

Since COV is a real symmetric matrix, one has

 �� � ���� and �� � ���� for �~

The most important dispersion of the data is then according

to the first principal component , so dividing accordingly it

allows having dense clusters.

2- Data of each obtained sub-clusters is gathered by bounding

form. The bounding forms of both clusters do not overlap

because overlapping degrades considerably the performances

of the similar search.

3- Hyper-rectangles are the bounding forms used; they are

directed according to the first principal component considered.

The direction of the bounding forms according to the first

principal component ensures the non-overlapping between the

two forms.

A.1. Data Partition

Figure 1 illustrates the example of data partition, in 2D, into

two clusters. The whole of the vectors of data constitutes the

matrix M (figure 1.a). Let us consider the matrix of covariance

COV and its first principal component U. As explained

previously, data is divided into two parts which are included in

two rectangles having as axis the line engendered by the first

principal component U. the two rectangles should not overlap.

Division is made with the separating plan (hyperplane starting

from 3D) passing by the center of data w and perpendicular to

the first principal component (figure 1.b). Data is divided

recursively into two parts PR and PL (R for right and L for left)

according to the following rule:

 !��"� � ���" � 	� # 0 % �" & '(
 !��"� � ���" � 	�) 0 % �" & '*
 �" is a multidimensional vector from the considered data.

(b)

Separating

hyper-plane

y

x

w

U

e1

y First

Principal

component

w

x
(a)

e1

World Academy of Science, Engineering and Technology 59 2011

519

Fig. 1 Example, in 2D, of data clustering and the use of the

Minimum Bounding Rectangles in direction of the first principal

component

Let us note MR and ML the two corresponding matrices of

the two parts. Clustering algorithm [16] is given in figure 2

below.

Fig. 2 PDDP Algorithm

A.2. The change of reference mark

The figure 1.c represents the case when the MBRs are in the

origin reference mark; in which the coordinates of the vectors

are expressed. It is clear that having MBRs in this way creates

an overlapping, and consequently, in a nearest neighbors

search, additional clusters will be consulted without improving

the results. As solution, to avoid the overlapping, we propose

to direct MBRs according to the first principal component

(figure 1.d). In this case, a change of reference mark is

essential.

Let B={e1,e2,…,en} be the canonical base of R
n
,

e1=(1,0,0...,0), e2=(0,1,0...,0), e3=(0,0,1...,0), ….

The goal is to build an orthonormal base B’={u1,u2,…,un}

where a vector is equal to U (u1 = U), such a base can be

obtained by transforming B by an orthogonal isomorphism, for

example by an orthogonal symmetry S. We must have

B'=(S(e1),S(e2),….,S(en)) and in particular S(e1)= u1=U.

 Let � � �+,-.�/+,-./ (3)

and H be the hyper-plane orthogonal to V, 0 � �1, so that H

be the mediator hyper-plane of e1 and U.

We define S as the orthogonal symmetry with respect to H.

The image of the vector x by S is: S(x) = x – 2<x,V>.V, where

<x,V> is the scalar product of x and V.

In particular, we have: ui = ei – 2<ei,V>.V 1 ≤ i ≤ n

With this definition of S when has, in fact, u1 = S(e1) = U.

In fact: u1 = e1 - 2α < e1,U - e1>.(U - e1)

With: 2 �
/+, -. /3 �
/+/34/-./3,�5-. , +6
 / /� � /
/� � 1 % 2 � 12�1 � 5

 , 6�

 8
 �

 � 22�1 � 5

 , 6� �5

 , 6 � 1�� �

�

 8
 �

 � 1�5

 , 6 � 1� �5

 , 6 � 1�� �

�

 8
 �

 � � �

� �

A.3. MBR’s construction

Let be NR (resp. NL) the matrix containing vectors of PR

(resp. PL) in the base B’.

We have: NR = MR - 2.V
T
.V. MR = (I - 2V

T
.V). MR (4)

 NL= ML - 2.V
T
.V. ML = (I - 2V

T
.V). ML (5)

0. Start with the matrix of vectors M(n x m), and

a desired number of clusters cmax.

1. Initialize Binary tree with a single Root node

2. For c = 2,3,…., cmax do

3. Select node C with largest ScatterValue

4. Create L & R : = left & right children of C

5. For i = 1 to Csize

 Compute g(xi), if g(xi) ≤ 0 assign xi to L

 else assign it to R

6. Result: A binary tree with cmax leaf nodes

forming a partitioning of the entire dataset

e1

w

x

(c)

e1
(d)

x

w

U

World Academy of Science, Engineering and Technology 59 2011

520

Vectors of NR (resp. NL) are included in a MBR RR (resp.

RL). A property of the MBR is that each of his face passes by a

vector at least. MBRs are characterized by vectors S and T,

where:

SR = min (NR) (resp. SL = min (NL)) and

TR = max (NR) (resp. TL = max (NL))

Note that the minimum and the maximum of this formula

are taken line by line, so that S = (s1,..,si,...sn) et T= (t1,..,ti,...tn)

where si (resp. ti) is the minimum (resp. the maximum) of the

i
th

 component of the considered vectors.

In an internal node (not a leaf) of the NOHIS-tree,

following information are stored: SR, TR, SL, TL and the

common vector V given by (3). A leaf node contains vectors, it

is called data node. Leaves represent the obtained clusters.

B. On-line phase

As a result from the off-line phase, a not balanced binary

tree is obtained. Let’s called father, a cluster having two sub-

clusters obtaining after division (for example, the nodes N1,

N2, N3 in figure 3), and child, a sub-cluster. Leaves are the

data nodes which contain the vectors. For a query vector q,

before searching its nearest neighbors, coordinates in the new

reference mark (i.e. the new base B’) must be calculated, in

order to calculate the distance to the MBR. The computing of

new coordinates is done in each level in the NOHIS-tree until

a leaf node. The passage of the q from a father node to its

child requires the computing of its new coordinates because a

change of the reference mark has occurred. Two children of

the same father have a common reference mark.

Fig. 3 Example of NOHIS-tree

B’ is orthonormal, so coordinates of q in B’ (q’) are given

by the products scalar:

 59, 8"6 � 59,
"6 � 25
" , �6 . 59, �6
 9: � ; 59, 8
6, 59, 8�6, … . . , 59, 8<6=�

 9> � 9 � 259, �6 . � (6)

Distance separating q from a rectangle R is calculated as

given in [17] using q’, S and T. MINDIST is the distance

between the query vector and an MBR.

 �?@�?AB�9>, C� � ∑ E9>" � F"E�<"G
 (7)

 with: F" � H I" JK 9>") I"L" JK 9>" M L" 9:"
NI
 O

And when q’ is inside the rectangle R, �?@�?AB�9>, C� � 0

B.1. Search Algorithm

Nearest neighbor search improves clustering efficiency. In

algorithm 1, we present our k-nearest neighbors search (k-nn)

adapted to the obtained NOHIS-tree. We note that NOHIS-tree

support also a range query search. For a vector query q, the k

nearest vectors must be returned. list_Neighbors (LN) is the

table containing k-nearest neighbors. For each nearest vector,

LN must contain: its index in the database, the index of the

cluster to which it belongs, and its distance from q. Distances

of the returned nearest neighbors are initialized in the infinite

value. Returned LN is sorted according to the distances. This

algorithm is recursive; the first call is done with the root of the

NOHIS-tree and a distance called maxDist initialized at 0. If

the node is not a leaf then, first q' is calculated by (6) and then

distances MINDIST given by (7) are computed between q' and

the two children’s MBRs of the node. A first recursive call in

the algorithm 1 can be made with the child node having

smallest distance MINDIST, let M[j] be this smallest distance.

We attribute to M[j] the maximum between M[j] itself and

maxDist. The condition of this recursive call is that M[j] must

be lower than the biggest distance contained in LN

(LN.dist[k]). A second call can be made with the second child

if the same condition is satisfied. Else if the considered node is

a leaf, Euclidian distances between q’ and all the vectors of

the node are computed. Only vectors having a distance lower

than LN.dist[k] are inserted in LN by an insertion sort

algorithm.

R(N1) = R(N2, N3)

N2 N3

Level 0

Level 3

Internal node

Leaf node

World Academy of Science, Engineering and Technology 59 2011

521

Algorithm 1 : K-NN Search

1. Begin

2. If the node is a leaf

3. For i : = 1 to node.size

4. Compute distance between vectQuestion and

 node.vect[i], let be dist;

5. if (dist < list_Neighbors.dist[k])

6. Insertion sort of current vector in list_Neighbors

7. end if

8. end For

9. Else

10. For j : = 1 to 2 (the two child nodes)

11. Compute coordinates of vectQuestion in the new

 reference mark, let be vectQuestion’

12. M[j] = MINDIST(vectQuestion’, MBR of node.child j)

13. end For

14. Take the child node having the smallest distance M[j];

15. M[j] = max (maxDist, M[j])

16. if (M[j] < list_Neighbors.dist[k])

17. Recursive call of K-NN Search passing the child node

 and M[j] as maxDist

18. end if

19. let MS the MINDIST of the second child

 20. MS = max(maxDist, MS)

21. if (MS <list_Neighbors.dist[k])

22. Recursive call of K-NN Search with the second child

 and MS as maxDist

23. end if

24. end Else

24. End

The condition of the recursive call in algorithm 1

(M[j] < LN.dist[k]) is necessary because distances of vectors

included in a MBR from a query vector can be only higher or

equal to M[j], and as LN is sorted in the ascending order,

therefore LN.dist[k] is the biggest distance contained in LN,

and consequently if M[j] is not lower than LN.dist[k], the

MBR cannot contains closer vectors to the query vector that

those already found.

In a hierarchical index the bounding forms of a level are

contained in that of the inferior level. Taking the example of a

father node, the bounding forms of its children are contained

in its bounding form and consequently, the distance from a

query vector to the father node is lower or equal to its

distances to the children. This gives a property to the

hierarchical index that the distance of a query vector q to the

bounding forms increases from a level to that highest.

In our index structure NOHIS-tree, bounding rectangles of

children (R1, R2) are not included completely in the bounding

rectangle of their father node R, as shown in the figure 4.

The instruction M[j] = max (maxDist, M[j]) in the line 15 of

algorithm 1, (resp. MS = max (maxDist, MS) in the line 20),

preserve the property that the distance increases from a level

to that highest in the search tree. M[j] expresses the distance to

their intersection.

Fig. 4 Example of children MBRs

IV. EXPERIMENTS

Clustering algorithm and the search algorithm are

implemented in C++. Algorithms run on a PC with Intel

processor, its CPU is 1.8 GHz and 2 Go of RAM. To evaluate

performances of similarity search using NOHIS-tree we

performed various experiments. We use a dataset of 5,481,487

descriptors of dimension 30. Descriptors are points of interest

derived from 22,991 images. In all experiments, we consider

the cumulated response time when searching in datasets 20

nearest neighbors (NNs) for 200 query vectors.

In experiment 1, we study the impact of clustering on the

search time. We are trying to determine the number of clusters

to obtain the best search time or at least to define a range of

minimum and maximum number of clusters giving the best

search time.

To carry out this study we used two groups of datasets and

several NOHIS-trees with different numbers of clusters are

generated for both groups dataset. Indexes and datasets of the

first group are loaded completely in main memory, and for the

second group, indexes and datasets are stored on hard disk and

loaded in main memory when necessary. Results of this

experiment are given in figures 5 and 6. We present results

when using the dataset of 969 729 descriptors, 30-d, from the

first group of datasets and the dataset of 3,079, 771 descriptors,

30-d, from the second group of datasets. We found that, for

the first group of datasets, search time decreases and becomes

monotonous in the interval P2√R, 4√RT, where n is the dataset

size. Even if the monotony is verified beyond 4√R, we

suggest setting the number of clusters closer to the upper

bound of the interval. And for the second group of datasets,

values of number of clusters minimizing the search time are

within the interval U
V √R, √RW.

x

R1

R2

R

d1 d2

World Academy of Science, Engineering and Technology 59 2011

522

Fig. 5 Exp.1 Search time when varying number of clusters, 20 NNs, 200 query vectors, dataset of 969,729 vectors, dimension 30

Fig. 6 Exp.1 Search time when varying number of clusters, 20 NNs, 200 query vectors, dataset of 3,079, 771 vectors, dimension 30

0

1

2

3

4

5

6

7

8

1
0
0

4
0
0

7
0
0

1
0
0
0

1
3
0
0

1
6
0
0

1
9
0
0

2
2
0
0

2
5
0
0

2
8
0
0

3
1
0
0

3
4
0
0

3
7
0
0

4
0
0
0

4
3
0
0

4
7
0
0

5
0
0
0

5
7
0
0

7
0
0
0

8
5
0
0

1
3
0
0
0

S
e
a
rc
h
 t
im
e
 (
s
)

Number of clusters

0

5

10

15

20

25

30

35

40

S
e
a
rc
h
 t
im
e
 (
s
)

Nomber of Clusters

World Academy of Science, Engineering and Technology 59 2011

523

In experiment 2, 6 datasets of 50,000 vectors and different

dimensions (25 to 150) are used and three search methods are

considered, sequential scan and k-NN search carried out the

PDDP-tree and NOHIS-tree. Sequential scan remains

competitive in high dimensional spaces. The PDDP-tree is

obtained when applying PDDP clustering algorithm and using

MBRs oriented according the original reference mark with

overlap as shown in Fig.1.c.

The goal is to study the impact of the dimensionality on the

three search methods. Figure 7 and table I show the total

search time for three search methods. NOHIS-tree

significantly outperforms the PDDP-tree and sequential scan.

In 25-dimensional space, the NOHIS-tree performs the queries

19.78 times faster than the PDDP-tree and 29.63 times faster

than the sequential scan. Even in 150-dimension space, the

NOHIS-tree is 5.91 times faster than the PDDP-tree and 8.146

times faster than the sequential scan. NOHIS-tree keeps its

performances even in high dimensional space.

TABLE I

EXP.2 IMPACT OF DATASET DIMENSIONALITY ON THE SEARCH PERFORMANCE

Fig. 7 Exp.2 Search time, 20 NNs, 200 query vectors, increasing

dimension

TABLE II

EXP.3 COMPARISON BETWEEN NOHIS-TREE, SR-TREE AND SEQ.SCAN

Fig. 8 Exp.3 Search time, 20 NNs, 200 query vectors, increasing

dataset size

In the experiment 3, NOHIS-tree is compared to SR-tree

and sequential search. SR-tree this index was chosen because

it is considered one of popular and recent used index. We used

the code version 2.0 of SR-tree provided by the authors, we

retained the default parameters; SR-tree is build dynamically.

In this experiment, the index and datasets of NOHIS-tree and

SR-tree are stored on the disk and loaded in main memory

when necessary. We use datasets of dimension 30 and varying

from 50,000 to 5,481,487 vectors. Results are given in table II

and figure 8. NOHIS-tree outperforms SR-tree; it is 5.96 times

faster than SR-tree when using the dataset of 3,079, 771 vectors

and 16.38 times faster than the SR-tree when using the dataset

of 100,000 vectors. Also, NOHIS-tree is 30.54 times faster

than sequential scan with the dataset of 100 000 vectors and

91.79 times faster than sequential scan with the dataset of

5,481,487 vectors.

0

2

4

6

8

10

12

14

16

18

20

25 40 80 100 150

S
e
a
rc
h
 t
im
e
 (
s
)

Dimension

NOHIS-tree

PDDP-tree

Seq.scan

0

100

200

300

400

500

600

700

S
e
a
rc
h
 t
im
e
 (
s
)

Dataset

NOHIS-tree

SR-tree

Seq.scan

Dimension
Number of

clusters

Serch time (s)

NOHIS-tree PDDP-tree Seq.scan

25 499 0,156 3,087 4,623

40 546 0,906 6,173 6,187

80 571 1,062 8,317 10,202

100 574 1,562 9,987 12,297

150 589 2,125 12,561 17,312

Size
Search time (s)

NOHIS-tree SR-tree Seq.scan

100 000 0,266 4,358 8,125

500 000 0,968 10,013 55,000

 969 729 2,984 20,875 100,703

2 110 042 4,219 26,155 227,626

3 079 771 5,687 33,920 329,989

5 481 487 6,484 47,859 595,21

World Academy of Science, Engineering and Technology 59 2011

524

V. CONCLUSION

In this paper we evaluated performances of the hierarchical

index NOHIS-tree when we scale up to very large databases.

Results show that NOHIS-tree performs better than SR-tree

and sequential scan search when the search is carried out on

huge datasets. We also presented a study of the influence of

clustering on search time. We included the performance test

that tries to determine the number of clusters in NOHIS-tree to

have the best search time; intervals were given to choose the

appropriate number of clusters when building NOHIS-tree.

Tests also show that NOHIS-tree keeps its performances in

high dimensional spaces. We plan to further improve NOHIS-

tree by including outliers detection.

ACKNOWLEDGMENT

 The authors would like to thank research center in the

college of computer and information sciences, King Saud

University, and the Information Technology department of

Faculty of Computing and Information Technology, King

Abdul-Aziz University, Jeddah, KSA, for their financial

support to complete this study.

REFERENCES

[1] C. Faloutsos, “Searching Multimedia Databases by Content”. Kluwer
Academic Publishers, 1996.

[2] R. Bellman, “Adaptive Control Process: A Guided Tour”. Princeton
University Press, 1961.

[3] N. Bouteldja, V. Gouet-Brunet and M. Scholl, “Evaluation of strategies
for multiple sphere queries with local image descriptors”. IS&T/SPIE
Conference on Multimedia Content Analysis, Management and
Retrieval, San Jose CA, USA, 2006.

[4] A. Guttman. “R-trees: A dynamic index structure for spatial searching”.
In Proceedings of the ACM SIGMOD International Conference on
Management of data, Boston, Masachussets, USA, pages 47-57. 1984.

[5] T. Zhang, R. Ramakrishnan, M. Linvy, “Birch: An efficient data
clustering method for very large databases”. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, Montreal,
Canada, pp.103-114, 1996.

[6] N. Beckman, H.P.Kriegel, R. Schneider, & B. Seeger, (1990). “The R*-
tree: An efficient and robust access method for points and rectangles”.
In Proceeding of the ACM SIGMOD International Conference on
Management of Data, Atlantic City, New Jersey, USA, pp. 322-331,
1990.

[7] S. Bertchold, D.A. Keim, H.P. Kriegel, “The X-tree: An index structure
for hight-dimentional data”. In Proceeding of the 22nd Internatioanl
Conference on Very Large Data Bases, Mumbai (Bombay), India, pp.
28-39, 1996.

[8] D.A. White and R. Jain, “Similarity Indexing with the SS-Tree”. In
Proceeding of the 12th Int’l Conf Data Eng., pp. 516-523, 1996.

[9] N. Katayama, S. Satoh. “The SR-tree : An index structure for high-
dimensional nearest neighbor queries”. In Proceeding of the ACM
SIGMOD, International Conference on Management of Data, Tuscon,
Arizona, USA, pages 369-380. 1997.

[10] J.T. Robinson, “The k-d-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 10-18, Apr. 1981.

[11] D.B. Lomet and B. Salzberg, “The hB-Tree: A Multiattribute Indexing
Method with Good Guaranteed Performance,” ACM Trans. Database
Systems, vol. 15, no. 4, pp. 625-658, 1990.

[12] A. Henrich, “The LSDh-Tree: An Access Structure for Feature
Vectors”. Proc. 14th Int’l Conf. Data Eng., pp. 362-369, 1998.

[13] J. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Comm. ACM, vol. 18, no. 9, pp. 509- 517,
1975.

[14] M. Taileb, S. Lamrous and S. Touati, “Non Overlapping Hierarchical
Index Struture”, International Journal of Computer Science, vol. 3 no. 1,
pp. 29-35, 2008.

[15] D. L. Boley, “Principal Direction Divisive Partitioning”, Data Mining
and Knowledge Discovery 2(4):325-344, 1998.

[16] S. Savaresi, D. L. Boley, S. Bittanti, G. Gazzaniga. “Choosing the
cluster to split in bisecting divisive clustering algorithms”. CSE Report
TR-00-055, University of Minnesota, 2000.

[17] N. Roussopoulos, S. Kelly, F. Vincent. “Nearest Neighbor Queries”. In
Proceeding of ACM SIGMOD, May 1995.

World Academy of Science, Engineering and Technology 59 2011

525

