
 

 

  

Abstract—In Content-Based Image Retrieval systems it is 

important to use an efficient indexing technique in order to perform 

and accelerate the search in huge databases.  The used indexing 

technique should also support the high dimensions of image features. 

In this paper we present the hierarchical index NOHIS-tree (Non 

Overlapping Hierarchical Index Structure) when we scale up to very 

large databases. We also present a study of the influence of clustering 

on search time. The performance test results show that NOHIS-tree 

performs better than SR-tree. Tests also show that NOHIS-tree keeps 

its performances in high dimensional spaces. We include the 

performance test that try to determine the number of clusters in 

NOHIS-tree to have the best search time. 

 

Keywords—High-dimensional indexing, k-nearest neighbors 

search.  

I. INTRODUCTION 

HERE is a need for content-based image retrieval systems 

in many fields such as geography, security and criminal 

picture identification system.  To implement a CBIR 

system two areas are involved which are image processing and 

similarity search. Image processing is the automatic 

description of the images; it consists of extracting from an 

image its visual properties (form, color, texture…). These 

properties are represented as multidimensional vectors called 

descriptors [1]. To find the images similar to a query image, a 

similarity search such k- nearest neighbors is made for each 

descriptor of the query image. Many similarity searches are 

carried out: as many searches as descriptors characterizing the 

image query. The use of a data structure to index the 

descriptors database is essential.. The need for an efficient 

indexing technique becomes a major concern for two reasons: 

the large quantity of images and the high dimensionality of 

descriptors.Existing indexing techniques work well with low-

dimensional descriptors. However, their performance degrades 

when the dimension of descriptors increases. This 

phenomenon is known as the curse of dimensionality [2].The 

rest of this paper is organized as follows. Section 2 discusses 

the related work. Section 3 describes the indexing technique 

NOHIS-tree. Section 4 evaluates performance of NOHIS-tree; 

it is compared to sequential scan, PDDP- tree and SR-tree. 

SR-tree has been chosen because it is a multidimensional 

index proposed recently which still attracts the attention [3]. 

Finally, section 5 concludes the paper.  

 

II. RELATED WORK 

Obtaining a high-dimensional index can be made by using 

traditional techniques of indexing such as R-tree [4], or by 
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using a clustering algorithm to form clusters or groups of 

descriptors, and the clusters are supported by a hierarchical 

structure, as an example BIRCH use CF-tree [5], DBSCAN 

use R*-tree [6] and X-tree [7]. Many high-dimensional index 

structures have been proposed, the most known and used are 

data-partitioning based index structure such as SS-tree [8], 

SR-tree [9], X-tree, considered as extensions of R-tree, and 

space-partitioning based index structure such as k-d-B-tree 

[10], hB-tree [11], and LSDh-tree [12] derived from kd-tree 

[13]. The R-tree-based index structures suffer from 

overlapping between bounding regions and the low fanouts, 

this influence negatively on the results of query processing. 

The kd-tree based index structures drawbacks are essentially 

the no guarantee of using allocated space; this led to the 

consultation of few populated or empty clusters. 

Taking into account drawbacks cited above, and with an 

aim to accelerate nearest neighbors’ search, the high 

dimensional index technique called NOHIS was proposed 

[14]. It is composed of two phases: 

- The first offline phase consists in gathering descriptors in 

clusters; the clustering algorithm used is the Principal 

Direction Divisive Partitioning (PDDP) [15]. It’s one of the 

divisive hierarchical clustering algorithms; it divides data 

recursively into two sub-clusters by using the hyper-plane 

orthogonal to the principal direction derived from the 

covariance matrix and passing through the cluster center to 

divide. A binary not balanced tree is obtained at the end of the 

clustering process. The contribution consists of using 

minimum bounding rectangle (MBR) avoiding overlap, MBRs 

are directed according to the principal direction (principal 

component) used in the clustering algorithm to divide a cluster 

into two sub-clusters. We call NOHIS-tree, the tree obtained 

by using PDDP, in which we use non overlapping rectangles. 

- The second online phase is the step during which the 

interrogation of the obtained index is made by a nearest 

neighbors search carried out on the NOHIS-tree. The search 

algorithm is adapted to the used MBRs. 

III. THE NOHIS-TREE 

The existing multi-dimensional indexing techniques can be 

divided in two groups according to the partitioning strategy, 

the data-partitioning and the space-partitioning based index 

structure. 

When the nearest neighbors search is applied on a data-

partitioning index, additional clusters are visited due to the 

overlapping between the bounding forms (spheres or 

rectangles). In the case of the space-partitioning index; 

consultation of few populated or empty clusters is extremely 

probable. 

By using NOHIS, the overlapping is avoided and the quality 

of clusters is preserved. This can be explained by the 

following facts: 
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1- The clustering algorithm forms clusters by using data 

dispersion, by guaranteeing the possibility to avoid empty and 

few populated clusters by fixing a minimal threshold for the 

cluster size (number of vectors contained in the node). 

2- The direction of the two MBRs according to the principal 

direction ensures that there is no overlapping between them. 

Before detailing the suggested method, we indicate by data the 

totality of multidimensional descriptors.  

A. Offline phase 

The phase offline of the suggested method can be 

represented in three principal stages: 

1 - Data constituting the initial cluster is divided into two sub-

clusters using the hierarchical clustering algorithm PDDP 

[12]. Division is made by the hyper-plane orthogonal to the 

first principal component passing through the cluster center to 

divide. The principal component corresponds to the first 

principal direction carried by the first eigenvector of the 

matrix COV given by (1) associated to its largest eigenvalue. 

M(n x m) represents the matrix of data to be clustered, m is the 

size of data, n their dimension and w the center of data given 

by (2): 

                ��� �  �� � 	
��� � � 	
���                          (1)                  
                                                                 	 � 
� . ��
 � �� � � �  ��� � 
� . �. 
                  (2) 

            
 � �1,1, … . . ,1�� 
 

Now let U be the first eigenvector of the matrix COV and ����  the associated eigenvalue. Let us consider a normalized 

vector X. The dispersion of the data, included in the matrix M, 

with respect to X can be calculated as following:  

    �� � |�� � 	
����|� 
 �  ���� � 	
���� � 	
���� 

                            �  ������                    
 

Since COV is a real symmetric matrix, one has 

 ��  � ���� and  �� � ����  for  �~  

 

The most important dispersion of the data is then according 

to the first principal component  , so dividing accordingly it 

allows having dense clusters. 

2- Data of each obtained sub-clusters is gathered by bounding 

form. The bounding forms of both clusters do not overlap 

because overlapping degrades considerably the performances 

of the similar search. 

3- Hyper-rectangles are the bounding forms used; they are 

directed according to the first principal component considered. 

The direction of the bounding forms according to the first 

principal component ensures the non-overlapping between the 

two forms. 

A.1.      Data Partition 

Figure 1 illustrates the example of data partition, in 2D, into 

two clusters. The whole of the vectors of data constitutes the 

matrix M (figure 1.a). Let us consider the matrix of covariance 

COV and its first principal component U. As explained 

previously, data is divided into two parts which are included in 

two rectangles having as axis the line engendered by the first 

principal component U. the two rectangles should not overlap. 

Division is made with the separating plan (hyperplane starting 

from 3D) passing by the center of data w and perpendicular to 

the first principal component (figure 1.b). Data is divided 

recursively into two parts PR and PL (R for right and L for left) 

according to the following rule: 

 !��"� �  ���" � 	� # 0     %      �"  & '( 
 !��"� �  ���" � 	� ) 0     %      �"  & '*  
 �"   is a multidimensional vector from the considered data. 
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Fig. 1 Example, in 2D, of data clustering and the use of the 

Minimum Bounding Rectangles in direction of the first principal 

component 

 

 

Let us note MR and ML the two corresponding matrices of 

the two parts. Clustering algorithm [16] is given in figure 2 

below. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2  PDDP Algorithm 

 

A.2.      The change of reference mark 

The figure 1.c represents the case when the MBRs are in the 

origin reference mark; in which the coordinates of the vectors 

are expressed. It is clear that having MBRs in this way creates 

an overlapping, and consequently, in a nearest neighbors 

search, additional clusters will be consulted without improving 

the results. As solution, to avoid the overlapping, we propose 

to direct MBRs according to the first principal component 

(figure 1.d). In this case, a change of reference mark is 

essential. 

Let B={e1,e2,…,en} be the canonical base of R
n
, 

e1=(1,0,0...,0), e2=(0,1,0...,0), e3=(0,0,1...,0), …. 

 

The goal is to build an orthonormal base B’={u1,u2,…,un} 

where a vector is equal to U (u1 = U), such a base can be 

obtained by transforming B by an orthogonal isomorphism, for 

example by an orthogonal symmetry S. We must have 

B'=(S(e1),S(e2),….,S(en)) and in particular S(e1)= u1=U.  

 

          Let     � � �+,-.�/+,-./                   (3)  

 

and H be the hyper-plane orthogonal to V, 0 � �1, so that H 

be the mediator hyper-plane of e1 and U. 

 

We define S as the orthogonal symmetry with respect to H. 

The image of the vector x by S is: S(x) = x – 2<x,V>.V, where 

<x,V> is the scalar product of x and V. 

 

In particular, we have: ui = ei – 2<ei,V>.V               1 ≤ i ≤ n 

With this definition of S when has, in fact, u1 = S(e1) = U. 

In fact: u1 = e1 - 2α < e1,U - e1>.(U - e1)   

 

With:          2 �  
/+, -. /3 � 
/+/34/-./3,�5-. ,   +6  
 / /� � /
/�  � 1 %  2 �  12�1 �  5

 ,    6� 

 8
 � 

 � 22�1 � 5

 ,    6� �5

 ,    6 �  1�� � 

� 

 8
 � 

 � 1�5

 ,    6 �  1� �5

 ,    6 �  1�� � 
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 8
 � 

 � � � 
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A.3.   MBR’s construction 

Let be NR (resp. NL) the matrix containing vectors of PR 

(resp. PL) in the base B’. 

We have: NR = MR - 2.V
T
.V. MR = (I - 2V

T
.V). MR            (4)  

                 NL= ML - 2.V
T
.V. ML = (I - 2V

T
.V). ML             (5) 

0. Start with the matrix of vectors M(n x m), and 

a desired number of clusters cmax. 

1. Initialize Binary tree with a single Root node 

2. For  c = 2,3,…., cmax  do 

3.      Select node C with largest ScatterValue  

4.      Create L & R : = left & right children of C 

5.      For i = 1 to Csize 

   Compute g(xi), if g(xi) ≤ 0 assign xi to L  

                            else assign it to R 

6. Result: A binary tree with cmax leaf nodes 

forming a partitioning of the entire dataset 

e1 

w 

x 
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Vectors of NR (resp. NL) are included in a MBR RR (resp. 

RL). A property of the MBR is that each of his face passes by a 

vector at least. MBRs are characterized by vectors S and T, 

where: 

SR = min (NR) (resp. SL = min (NL))       and 

TR = max (NR) (resp. TL = max (NL)) 

Note that the minimum and the maximum of this formula 

are taken line by line, so that S = (s1,..,si,...sn) et T= (t1,..,ti,...tn) 

where si (resp. ti) is the minimum (resp. the maximum) of the 

i
th

 component of the considered vectors. 

In an internal node (not a leaf) of the NOHIS-tree, 

following information are stored: SR, TR, SL, TL and the 

common vector V given by (3). A leaf node contains vectors, it 

is called data node. Leaves represent the obtained clusters. 

B.  On-line phase 

As a result from the off-line phase, a not balanced binary 

tree is obtained. Let’s called father, a cluster having two sub-

clusters obtaining after division (for example, the nodes N1, 

N2, N3 in figure 3), and child, a sub-cluster. Leaves are the 

data nodes which contain the vectors. For a query vector q, 

before searching its nearest neighbors, coordinates in the new 

reference mark (i.e. the new base B’) must be calculated, in 

order to calculate the distance to the MBR. The computing of 

new coordinates is done in each level in the NOHIS-tree until 

a leaf node. The passage of the q from a father node to its 

child requires the computing of its new coordinates because a 

change of the reference mark has occurred. Two children of 

the same father have a common reference mark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Example of NOHIS-tree 

 

 

 

B’ is orthonormal, so coordinates of q in B’ (q’) are given 

by the products scalar:  

 59, 8"6 �  59, 
"6  � 25
" , �6 . 59, �6 
 9: � ; 59, 8
6, 59, 8�6, … . . , 59, 8<6=� 

                         9> �  9 � 259, �6 . �                                      (6) 

 

Distance separating q from a rectangle R is calculated as 

given in [17] using q’, S and T. MINDIST is the distance 

between the query vector and an MBR. 

 

              �?@�?AB�9>, C� �  ∑ E9>" � F"E�<"G
                       (7) 

 

   with:     F" �  H I" JK 9>" ) I"L" JK 9>" M L" 9:" 
NI
 O 
 

And when q’ is inside the rectangle R, �?@�?AB�9>, C� � 0 

 

B.1.      Search Algorithm 

Nearest neighbor search improves clustering efficiency. In 

algorithm 1, we present our k-nearest neighbors search (k-nn) 

adapted to the obtained NOHIS-tree. We note that NOHIS-tree 

support also a range query search. For a vector query q, the k 

nearest vectors must be returned. list_Neighbors (LN) is the 

table containing k-nearest neighbors. For each nearest vector, 

LN must contain: its index in the database, the index of the 

cluster to which it belongs, and its distance from q. Distances 

of the returned nearest neighbors are initialized in the infinite 

value. Returned LN is sorted according to the distances. This 

algorithm is recursive; the first call is done with the root of the 

NOHIS-tree and a distance called maxDist initialized at 0. If 

the node is not a leaf then, first q' is calculated by (6) and then 

distances MINDIST given by (7) are computed between q' and 

the two children’s MBRs of the node. A first recursive call in 

the algorithm 1 can be made with the child node having 

smallest distance MINDIST, let M[j] be this smallest distance. 

We attribute to M[j] the maximum between M[j] itself and 

maxDist. The condition of this recursive call is that M[j] must 

be lower than the biggest distance contained in LN 

(LN.dist[k]). A second call can be made with the second child 

if the same condition is satisfied. Else if the considered node is 

a leaf, Euclidian distances between q’ and all the vectors of 

the node are computed. Only vectors having a distance lower 

than LN.dist[k] are inserted in LN by an insertion sort 

algorithm. 

 

 

 

 

R(N1) = R(N2, N3) 

N2 N3 

Level 0 
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Algorithm 1 : K-NN Search 

1. Begin 

2.    If the node is a leaf  

3.       For i : = 1 to node.size 

4.           Compute distance between vectQuestion and 

              node.vect[i], let be dist; 

5.           if (dist < list_Neighbors.dist[k])  

6.              Insertion sort of current vector in list_Neighbors  

7.           end if 

8.        end For    

9.    Else 

10.     For j : = 1 to 2 (the two child nodes) 

11.         Compute coordinates of vectQuestion in the new  

              reference mark, let be vectQuestion’ 

12.         M[j] = MINDIST(vectQuestion’, MBR of node.child j)  

13.     end For     

14.      Take the child node having the smallest distance M[j]; 

15.          M[j] = max (maxDist, M[j]) 

16.      if (M[j]  <  list_Neighbors.dist[k])  

17.          Recursive call of K-NN Search passing the child node 

               and M[j] as maxDist 

18.      end if        

19.     let MS the MINDIST of the second child 

 20.    MS = max(maxDist, MS) 

21.      if (MS <list_Neighbors.dist[k]) 

22.            Recursive call of K-NN Search with the second child 

                 and MS as maxDist 

23.      end if 

24.    end Else 

24. End  

 

The condition of the recursive call in algorithm 1          

(M[j] < LN.dist[k]) is necessary because distances of vectors 

included in a MBR from a query vector can be only higher or 

equal to M[j], and as LN is sorted in the ascending order, 

therefore LN.dist[k] is the biggest distance contained in LN, 

and consequently if M[j] is not lower than LN.dist[k], the 

MBR cannot contains closer vectors to the query vector that 

those already found. 

In a hierarchical index the bounding forms of a level are 

contained in that of the inferior level. Taking the example of a 

father node, the bounding forms of its children are contained 

in its bounding form and consequently, the distance from a 

query vector to the father node is lower or equal to its 

distances to the children. This gives a property to the 

hierarchical index that the distance of a query vector q to the 

bounding forms increases from a level to that highest. 

In our index structure NOHIS-tree, bounding rectangles of 

children (R1, R2) are not included completely in the bounding 

rectangle of their father node R, as shown in the figure 4. 

The instruction M[j] = max (maxDist, M[j]) in the line 15 of 

algorithm 1, (resp. MS = max (maxDist, MS) in the line 20), 

preserve the property that the distance increases from a level 

to that highest in the search tree. M[j] expresses the distance to 

their intersection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Example of children MBRs 

IV. EXPERIMENTS 

Clustering algorithm and the search algorithm are 

implemented in C++. Algorithms run on a PC with Intel 

processor, its CPU is 1.8 GHz and 2 Go of RAM. To evaluate 

performances of similarity search using NOHIS-tree we 

performed various experiments. We use a dataset of 5,481,487 

descriptors of dimension 30. Descriptors are points of interest 

derived from 22,991 images. In all experiments, we consider 

the cumulated response time when searching in datasets 20 

nearest neighbors (NNs) for 200 query vectors. 

In experiment 1, we study the impact of clustering on the 

search time. We are trying to determine the number of clusters 

to obtain the best search time or at least to define a range of 

minimum and maximum number of clusters giving the best 

search time. 

To carry out this study we used two groups of datasets and 

several NOHIS-trees with different numbers of clusters are 

generated for both groups dataset. Indexes and datasets of the 

first group are loaded completely in main memory, and for the 

second group, indexes and datasets are stored on hard disk and 

loaded in main memory when necessary. Results of this 

experiment are given in figures 5 and 6. We present results 

when using the dataset of 969 729 descriptors, 30-d, from the 

first group of datasets and the dataset of 3,079, 771 descriptors, 

30-d, from the second group of datasets. We found that, for 

the first group of datasets, search time decreases and becomes 

monotonous in the interval P2√R, 4√RT, where n is the dataset 

size. Even if the monotony is verified beyond  4√R, we 

suggest setting the number of clusters closer to the upper 

bound of the interval.  And for the second group of datasets, 

values of number of clusters minimizing the search time are 

within the interval U
V √R, √RW. 
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Fig. 5 Exp.1 Search time when varying number of clusters, 20 NNs, 200 query vectors, dataset of 969,729 vectors, dimension 30 

 

 

 

 

 
 

Fig. 6 Exp.1 Search time when varying number of clusters, 20 NNs, 200 query vectors, dataset of 3,079, 771 vectors, dimension 30 
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In experiment 2, 6 datasets of 50,000 vectors and different 

dimensions (25 to 150) are used and three search methods are 

considered, sequential scan and k-NN search carried out the 

PDDP-tree and NOHIS-tree. Sequential scan remains 

competitive in high dimensional spaces. The PDDP-tree is 

obtained when applying PDDP clustering algorithm and using 

MBRs oriented according the original reference mark with 

overlap as shown in Fig.1.c.  

The goal is to study the impact of the dimensionality on the 

three search methods. Figure 7 and table I show the total 

search time for three search methods. NOHIS-tree 

significantly outperforms the PDDP-tree and sequential scan. 

In 25-dimensional space, the NOHIS-tree performs the queries 

19.78 times faster than the PDDP-tree and 29.63 times faster 

than the sequential scan. Even in 150-dimension space, the 

NOHIS-tree is 5.91 times faster than the PDDP-tree and 8.146 

times faster than the sequential scan. NOHIS-tree keeps its 

performances even in high dimensional space. 

 
TABLE I 

EXP.2 IMPACT OF DATASET DIMENSIONALITY ON THE SEARCH PERFORMANCE 

 

 
 

Fig. 7 Exp.2 Search time, 20 NNs, 200 query vectors, increasing 

dimension 

 

 

 

 

 

 

 
 

TABLE II 

EXP.3 COMPARISON BETWEEN NOHIS-TREE, SR-TREE AND SEQ.SCAN 

        

 
 

 

Fig. 8 Exp.3 Search time, 20 NNs, 200 query vectors, increasing 

dataset size 

 

 

In the experiment 3, NOHIS-tree is compared to SR-tree 

and sequential search. SR-tree this index was chosen because 

it is considered one of popular and recent used index. We used 

the code version 2.0 of SR-tree provided by the authors, we 

retained the default parameters; SR-tree is build dynamically. 

In this experiment, the index and datasets of NOHIS-tree and 

SR-tree are stored on the disk and loaded in main memory 

when necessary. We use datasets of dimension 30 and varying 

from 50,000 to 5,481,487 vectors. Results are given in table II 

and figure 8. NOHIS-tree outperforms SR-tree; it is 5.96 times 

faster than SR-tree when using the dataset of 3,079, 771 vectors 

and 16.38 times faster than the SR-tree when using the dataset 

of 100,000 vectors. Also, NOHIS-tree is 30.54 times faster 

than sequential scan with the dataset of 100 000 vectors and 

91.79 times faster than sequential scan with the dataset of 

5,481,487 vectors. 
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Serch time (s) 

NOHIS-tree PDDP-tree Seq.scan  

25 499 0,156 3,087 4,623 

40 546 0,906 6,173 6,187 

80 571 1,062 8,317 10,202 

100 574 1,562 9,987 12,297 

150 589 2,125 12,561 17,312 

Size  
Search time (s) 

NOHIS-tree SR-tree Seq.scan 

100 000 0,266 4,358 8,125 

500 000 0,968 10,013 55,000 

 969 729 2,984 20,875 100,703 

2 110 042 4,219 26,155 227,626 

3 079 771 5,687 33,920 329,989 

5 481 487 6,484 47,859 595,21 
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V. CONCLUSION 

In this paper we evaluated performances of the hierarchical 

index NOHIS-tree when we scale up to very large databases. 

Results show that NOHIS-tree performs better than SR-tree 

and sequential scan search when the search is carried out on 

huge datasets.  We also presented a study of the influence of 

clustering on search time. We included the performance test 

that tries to determine the number of clusters in NOHIS-tree to 

have the best search time; intervals were given to choose the 

appropriate number of clusters when building NOHIS-tree. 

Tests also show that NOHIS-tree keeps its performances in 

high dimensional spaces. We plan to further improve NOHIS-

tree by including outliers detection. 
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