Thermal Transport Properties of TlInTe₂ Single Crystals

A.A. Al-Ghamdi, A.T. Nagat¹, F.S. Al-Hazmi¹, S. Al-Heniti, S.A. Al-Gohtany¹ and F. Shokr¹

Department of Physics, Faculty of Science, and ¹College of Girl Education, King Abdulaziz University, Jeddah, Saudi Arabia aghamdi90@hotmail.com

Abstract. Thallium indium ditelluride single crystal, was prepared by a special design constructed by our group. A brass working chamber designed for measuring (TEP) in a wide range of temperature was used. The experimental results indicates that T1InTe₂ is of p-type conductivity. The mobility of charge carriers, holes and electrons was found to be 2.129×10^3 cm² / V, sec and 1.218×10^5 cm² / V, sec respectively. The effective masses of the majority and minority carriers were deduced to be 5.367×10^{-37} kg and 6.856×10^{-43} kg respectively. The diffusion coefficient, relaxation time and diffusion length for holes was calculated to be 551.436 cm² / sec, 7.142×10^{-21} sec and 1.986×10^{-9} cm respectively. Also $D_n \cdot \tau_n$, L_n for the electrons was calculated to be 3.156×10^3 cm³ / sec, 5.222×10^{-26} sec and 1.284×10^{-11} cm respectively. In addition to these pronounced parameters, the efficiency of the thermoelectric element (figure of merit) was evaluated, which leads to better application in many fields .

*Keywords: TlInTe*₂, single crystals, thermoelectric power, semiconductor, charge carriers.