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INTRODUCTION

Protein post-translational modification (PTM or 
PTLM) is one of the most efficient biological mechanisms 
for expanding the genetic code and regulating cellular 
physiology. Hydroxylation is one type of PTM that can 
take place in proteins to hydroxylate proline and lysine. 
Hydroxyproline (HyP) is the key factor in stabilizing 
collagens [1, 2], whose instability or abnormal activity 
may cause stomach cancer [3] and lung cancer [4, 5]. 
Hydroxylysine (HyL) is also found in collagen, which 
may affect fibrillogenesis, cross-linking, and matrix 
mineralization [6]. Consequently, identifying the HyP and 

HyL sites in proteins is an indispensable step for decoding 
protein function. It is also crucially important for in-depth 
understanding the physiological roles of hydroxylation. 
Meanwhile, it can also provide useful information for 
developing drugs to treat various diseases associated with 
hydroxylation. 

Although the information of HyP and HyL can be 
determined by means of large-scale mass spectrometry, it 
is time-consuming and expensive. Therefore, it is highly 
demanded to develop computational methods to deal 
with this problem. In a pioneer work, by incorporating 
dipeptide position-specific propensity into the general 
Chou’s pseudo amino acid composition (PseAAC) [7] and 
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ABSTRACT
Protein hydroxylation is a posttranslational modification (PTM), in which a 

CH group in Pro (P) or Lys (K) residue has been converted into a COH group, or a 
hydroxyl group (-OH) is converted into an organic compound. Closely associated 
with cellular signaling activities, this type of PTM is also involved in some major 
diseases, such as stomach cancer and lung cancer. Therefore, from the angles of both 
basic research and drug development, we are facing a challenging problem: for an 
uncharacterized protein sequence containing many residues of P or K, which ones 
can be hydroxylated, and which ones cannot? With the explosive growth of protein 
sequences in the post-genomic age, the problem has become even more urgent. 
To address such a problem, we have developed a predictor called iHyd-PseCp by 
incorporating the sequence-coupled information into the general pseudo amino acid 
composition (PseAAC) and introducing the “Random Forest” algorithm to operate 
the calculation. Rigorous jackknife tests indicated that the new predictor remarkably 
outperformed the existing state-of-the-art prediction method for the same purpose.  
For the convenience of most experimental scientists, a user-friendly web-server for 
iHyd-PseCp has been established at http://www.jci-bioinfo.cn/iHyd-PseCp, by which 
users can easily obtain their desired results without the need to go through the 
complicated mathematical equations involved. 
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using the discriminant function algorithm used by Chou 
et al. for identifying the HIV protease cleavage sites [8, 9], 
Xu et al. [10] proposed a predictor called iHyd-PseAAC 
to identify the HyP and HyL sites in proteins. Although 
these authors did make contribution in stimulating the 
development of this area, more work is definitely needed 
to improve the prediction quality. And the current study 
is to devote to do so by introducing the sequence-coupled 
approach. 

According to the Chou’s 5-step rule [7] and 
concurred by many investigators in a series of recent 
publications [11–23], for developing a new prediction 
method that can be widely used by broad users, we should 
consider the following five points: (1) the prediction 
method should be with a web-server accessible to public; 
(2) a compelling demonstration to show its prediction 
quality being improved over the existing counterparts; 
(3) a good benchmark dataset used to train or test the 
new model; (4) an elegant mathematical formulation to 
represent the statistical samples concerned; and (5) a 
powerful algorithm to operate the calculation.  Below, let 
us address the above points one-by-one.

RESULTS AND DISCUSSION

A new predictor and its user guide

A powerful predictor, called iHyd-PseCp, has 
been developed for identifying the HyP and HyL sites in 
proteins.  The new predictor is accessible to the public. 

Users can easily get their desired results by following the 
instructions below.

(1)  Open the iHyd-PseCp web-server at http://www.
jci-bioinfo.cn/iHyd-PseCp, your computer will be 
prompted with the web-server top-page shown on 
its screen (Figure 1).

(2)  In the input box (Figure 1), enter your query protein 
sequences. This can be done by either typing or 
copying/pasting manner. The entered query protein 
sequences should be in the FASTA format. If you 
are not familiar with FASTA, just click the Example 
button to see what it looks like.

(3)  If you wish to predict HyP sites, check on the Pro 
button; if you wish to predict the HyL sites, check 
on the Lys button.

(4)  Click the Submit button to see the predicted result. 
For example, if you use the sequences of the two 
query proteins in the Example window as the input 
and check the Pro button on, after clicking the 
Submit button, you will see the following predicted 
results: (a) The total number of Pro (P) in the 1st 
protein (P35248) is 41, of which those located at 
the sequence positions 47, 95, 149, 170 and 200 
(highlighted with red) are of the hydroxylation site, 
but the remaining 36 sites are not. (b) The total 
number of Pro residues in the 2nd protein (Q4ZJN1) 
is 31, of which those at the sequence positions 
31, 34, 40, 58, 61, 64, 76, 115, 151, 160 and 175 
(highlighted with red) are of the hydroxylation 

Figure 1: A semi-screenshot to show the top-page of the iHyd-PseCp web-server at  http://www.jci-bioinfo.cn/iHyd-
PseCp. 
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site, but the remaining 20 sites are not. For the 
same input sequences, however, if you check on 
the Lys button, you will instead see the following 
outcomes after clicking the Submit button: (a) The 
total number of Lys (K) residues in the 1st protein 
(P35248) is 21, of which those located at the 
sequence positions 86 and 98 (highlighted in red) 
are of the hydroxylation site, but the remaining 19 
sites are not. (b) The total number of Lys residues 
in the 2nd protein (Q4ZJN1) is 24, of which those 
at the sequence positions 73 and 127 (highlighted in 
red) are of the hydroxylation site, but the remaining 
22 sites are not.  It would take about 30 seconds 
before the aforementioned results shown on your 
screen. Of course, the more number of query protein 
sequences or the longer of the sequences concerned, 
the more time it is usually needed. 

(5)  If you have many query protein sequences and need 
long computational time, you can also use the batch 
prediction mode. To do so, just use the Browse 
button to select the desired file (in FASTA format 
of course) and follow the online instructions.

(6)  To download the benchmark dataset used in this 
study, click the Supporting Information button on 
the top of Figure 1.

(7)  If you wish to find the papers closely related to the 
development of the current new prediction method, 
click Citation button.

RESULTS AND ANALYSIS

The success rates achieved by the new predictor 
iHyd-PseCp via the rigorous jackknife test on the 164 
hydroxyproline proteins are given in Table 1, where for 
facilitating comparison, the corresponding rates obtained 
by the predictor iHyd-PseAAC [10] are also listed.  Also, 
the jackknife success rates by the new predictor iHyd-
PseCp on the 33 hydroxylysine proteins are given in 
Table 2, along with the corresponding rates obtained by 
the predictor iHyd-PseAAC [10]. As we can see from 
Table 1, for predicting the HyP sites, the newly proposed 
method has remarkably outperformed the state-of-the-
art method from all the four angles: overall accuracy 
Acc, stability MCC, sensitivity Sn, and specificity Sp. 
As for the prediction of the HyL sites, it can be observed 
from Table 2 that the new predictor iHyd-PseCp has 
significantly outperformed iHyd-PseAAC [10] in Acc 
and MCC. Although the rate of Sn by the new predictor is 
about 9% lower than that by iHyd-PseAAC, interestingly 
the rate of Sp by the new predictor is about 16% higher 
than that by iHyd-PseAAC.  

It is instructive to point out that, of the four metrics, 
the most important are the Acc and MCC [11, 12, 21, 22]: 
the former reflects the overall accuracy of a predictor; 
while the latter, its stability in practical applications. The 
metrics Sn and Sp are used to measure a predictor from 

two opposite angles. When, and only when, both Sn and 
Sp of the predictor A are higher than those of the predictor 
B, can we say A is better than B [19]. In other words, 
Sn and Sp are actually constrained with each other [24]. 
Therefore, it is meaningless to use only one of the two 
for comparing the quality of two predictors. A meaningful 
comparison in this regard should count the rates of both Sn 
and Sp, or even better count the rate of their combination, 
which is none but the score of MCC.

Graphic analysis is a very useful vehicle to deal 
with complicated biological systems as demonstrated by a 
series of previous studies (see, e.g., [25–50]). To provide 
an intuitive comparison of the proposed method with the 
existing state-of-the art method [10] by using the graphic 
analysis, let us use the Receiver Operating Characteristic 
(ROC) graphs [51, 52] as given in Figure 2. In the figure, 
the green and red graphic lines are the ROC curves for 
iHyd-PseCp and iHyd-PseAAC [10], respectively, where 
panel (a) is for the case in predicting HyP sites in proteins, 
and panel (b) for the case of HyL. The area under the ROC 
curve is called AUC (area under the curve). The greater 
the AUC value is, the better the predictor will be [51, 52]. 
As we can see from Figure 2, the area under the green 
curve is remarkably greater than that under the red line for 
both the HyP and HyL cases, once again indicating that 
the proposed predictor is indeed much better than iHyd-
PseAAC [10]. Accordingly, we anticipate that iHyd-PseCp 
will become a useful bioinformatics tool for identifying 
HyP and HyL sites in proteins, or at the very least, play a 
complementary role to the existing state-of-the art tool in 
this area. 

Why could the proposed method be able to increase 
the prediction quality so substantially?  This is due to 
the fact that the amino-acid-coupled effects around the 
hydroxylation sites have been taken into account via the 
conditional probability approach.  Similar remarkable 
successes have also been observed in predicting beta-
turns [53], alpha-turns [54], tight turns and their types 
in proteins [55], specificity of GalNAc-transferase [56], 
HIV protease cleavage sites [8, 24, 57], as well as signal 
peptide cleavage sites [58–60].

MATERIALS AND METHODS

Benchmark dataset
The benchmark dataset used in this study was derived 

from the same proteins as used by Xu et al. [10]. They 
consist of 164 hydroxyproline proteins and 33 hydroxylysine 
proteins. The former were used to construct the benchmark 
dataset for studying the HyP sites, while the latter used to 
construct the benchmark dataset for studying the HyL sites. 

To make the description mathematically more 
rigorous and clear, the Chou’s scheme [61] was adopted 
to formulate peptide samples, as done recently by many 
authors in studying the nitrotyrosine sites [62], methylation 
sites [63], protein-protein interaction [64], and protein-
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Figure 2: The intuitive graphs of ROC curves to show the performance of iHyd-PseAAC [10] and iHyd-PseCp proposed 
in this paper, respectively, for the case of (A) HyP and (B) HyL. See the main text for further explanation.

Table 1: A comparison of the proposed predictor with the state-of-the-art method in identifying 
the HyP sites in proteinsa

Predictor Acc (%)d MCCd Sn (%)d Sp (%)
iHyd-PseAACb 80.57 0.51 80.66 80.54
iHyd-PseCpc 96.58 0.89 86.35 99.12

aThe scores here were generated by the rigorous jackknife tests on the 164 hydroxyproline proteins as adopted by Xu et al. [10]. 
bThe predictor developed by Xu et al. [10].
cThe predictor proposed in this paper.
dSee Eq.9 for the metrics definition.
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protein binding sites [65]. According to Chou’s scheme, a 
potential hydroxylation site-containing peptide sample can 
be generally expressed by

( 1) 2 1 1 2 ( 1)( ) R R R R R R R Rξ −ξ − ξ− − − + + + ξ− +ξ=P    (1)

where the symbol   denotes the single amino acid 
code P or K,  the subscript ξ  is an integer, R−ξ  represents 
the ξ -th upstream amino acid residue from the center, the 
R+ξ  the ξ -th downstream amino acid residue, and so 
forth. The (2 1)ξ + -tuple peptide sample ( )ξP   can be 
further classified into the following two categories:

( )
( )

( )
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where ( )+
ξP   denotes a true hydroxylation segment with 

P or K at its center, ( )−
ξP   a false hydroxylation segment 

with P or K at its center, and the symbol ∈  means “a 
member of” in the set theory.

In literature the benchmark dataset usually consists 
of a training dataset and a testing dataset: the former is 
used for training a model, while the latter for testing the 
model. But as pointed out in a comprehensive review [66], 
there is no need to artificially separate a benchmark dataset 
into the two parts if the prediction model is examined by 
the jackknife test or subsampling (K-fold) cross-validation 
since the outcome thus obtained is actually from a 
combination of many different independent dataset tests. 

Thus, the benchmark dataset ( )î   for the current 
study can be formulated as

( )
( )
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(3)

where the positive subset ( )+
ξ   only contains the 

samples of true hydroxylation segments ( )+
ξP  , and the 

negative subset ( )−
ξ   only contains the samples of false 

hydroxylation segments ( )−
ξP   (see Eq.2); while   

represents the symbol for “union” in the set theory.
The detailed procedures in constructing the 

benchmark dataset ( )Pξ  are as follows. (1) As done in 
[61], slide the ( )2 1ξ + -tuple peptide window along each 
of the aforementioned 164 hydroxyproline protein 
sequences, and collected were only those peptide segments 

that have P (Pro) at the center. (2) If the upstream or 
downstream in a protein sequence was less than ξ or 
greater than L − ξ   where L is the length of the protein 
sequence concerned, the lacking amino acid was filled 
with a dummy residue X. (3) The peptide segment samples 
thus obtained were put into the positive subset if their 
centers have been experimentally annotated as the 
hydroxylation sites; otherwise, into the negative subset. 
(4) The peptide samples thus obtained were subject to a 
screening procedure to window those that were identical 
to any other in a same subset; excluded from the 
benchmark dataset were also those that were self-conflict, 
namely, occurring in both hydroxylation group and non-
hydroxylation group.

By following the same procedures but using the 33 
hydroxylysine proteins and focusing on K (Lys), instead of 
the 164 hydroxyproline proteins and P (Pro), we obtained 
the benchmark dataset ( )Kξ .

Because the length of peptide sample ( )ξP   is 
2 1ξ +  (see Eq.1), the benchmark dataset with different ξ  
value will contain peptide segments with different number 
of amino acid residues, as illustrated below
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But preliminary tests had indicated that it would be 
most promising when 10ξ = . Consequently, for further 
study below, instead of Eq.3, we shall consider 
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where the benchmark dataset 10 (P)ξ=  contains 4,356 
( )2 1 21ξ + = -tuple peptide samples, of which 851 belong 
to the positive subset 10 (P)+

ξ= , and 3,505 to the negative 
subset 10 (P)−

ξ= ; the benchmark dataset 10 (K)ξ=  contains 
1,122 ( )2 1 21ξ + = -tuple peptide samples, of which 142 
belong to the positive subset 10 (K)+

ξ= , and 980 to the 
negative subset 10 (K)−

ξ= . For readers’ convenience, the 
detailed sequences of the aforementioned positive and 

Table 2: A comparison of the proposed predictor with the state-of-the-art method in identifying 
the HyL sites in proteinsa

Predictor Acc (%)d MCCd Sn (%)d Sp (%)d

iHyd-PseAACb 83.56 0.50 87.85 83.01
iHyd-PseCpc 97.08 0.86 78.77 99.80

aThe scores here were generated by the rigorous jackknife tests on the 33 hydroxylysine proteins as adopted by Xu et al. [10]. 
bThe predictor developed by Xu et al. [10].
cThe predictor proposed in this paper.
dSee Eq.9 for the metrics definition.
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negative samples in 10 (P)ξ=  and 10 (K)ξ=  are given in 
Online Supporting Information S1 and Online Supporting 
Information S2, respectively.

Sequence-coupled information and general 
PseAAC

With the avalanche of biological sequence generated 
in the post-genomic age, one of the most important 
problems in computational biology is how to formulate 
a biological sequence with a discrete model or a vector, 
yet still considerably keep its sequence pattern or order 
information. This is because all the existing machine-
learning algorithms can only handle vector but not 
sequence samples, as elaborated in [67].

To address this problem, the pseudo amino acid 
composition [68, 69] or PseAAC was proposed. Ever since 
the concept of pseudo amino acid composition or Chou’s 
PseAAC [70–72] was proposed, it has rapidly penetrated 
into nearly all the areas of computational proteomics (see, 
e.g., [73–80] as well as a long list of references cited in 
[81, 82]) and many biomedicine and drug development 
areas [67, 83–86]. Because it has been widely and 
increasingly used, recently three powerful open access 
soft-wares, called ‘PseAAC-Builder’ [70], ‘propy’ [71], 
and ‘PseAAC-General’ [81], were established: the former 
two are for generating various modes of Chou’s special 
PseAAC; while the 3rd one for those of Chou’s general 
PseAAC [7], including not only all the special modes 
of feature vectors for proteins but also the higher level 
feature vectors such as “Functional Domain” mode (see 
Eqs. 9–10 of [7]), “Gene Ontology” mode (see Eqs. 
11–12 of [7]), and “Sequential Evolution” or “PSSM” 
mode (see Eqs.13–14 of [7]). Inspired by the successes 
of using PseAAC to deal with protein/peptide sequences, 
three web-servers [87–89] were developed for generating 
various feature vectors for DNA/RNA sequences as well. 
Particularly, recently a powerful web-server called Pse-in-
One [90] has been developed that can be used to generate 
any desired feature vectors for protein/peptide and DNA/
RNA sequences according to the need of users’ studies.

According to the general PseAAC [7], the peptide 
sequence of Eq.1 can be formulated as

( ) ( ) ( )10 10 10
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In Eq.7 10 10 9(R | R )p+− − −  is the conditional 
probability of amino acid 10R−  occurring at the left 1st 
position (see Eq.1) given that its closest right neighbor is 

9R− , 9 9 8(R | R )p+− − −  is the conditional probability of 
amino acid 9R  occurring at the left 2nd position given that 
its closest right neighbor is 8R− , and so forth. Note that in 
Eq.7, only 

1 1(R )p+− −
 and 

1 1(R )p++ +
 are of non-conditional 

probability since the right neighbor of 1R−  and the left 
neighbor of 1R+  are always   (namely Pro for the case of 
HyP, or Lys for the case of HyL). All these probability 
values can be easily derived from the positive training 
subsets taken from Supporting Information S1 and S2, 
respectively, as done in [9]. Likewise, the components in 
Eq.8 are the same as those in Eq.7 except for that they are 
derived from the negative training subsets in Supporting 
Information S1 and S2, respectively.
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Random forests algorithm

The random forests (RF) algorithm is a powerful 
algorithm and has been widely used in many areas of 
computational biology (see, e.g. [13–15, 64, 65, 91–93]). 
The algorithm of random forest is based on the ensemble 
of a large number of decision trees, where each tree gives a 
classification and the forest chooses the final classification 
via the most votes (over all the trees in the forest). In the 
most commonly used type of random forests, split selection 
is performed based on the so-called decrease of Gini 
impurity. In this study, the random forest is used to rank 
the features using Gini importance that is implemented with 
the machine learning platform scikit-learn. The detailed 
procedures of RF and its formulation have been very clearly 
described in [94], and hence there is no need to repeat here.

For the current study, all the involved peptide 
samples were converted into a 20-D (dimensional) vector 
according to Eq.6, and then entered into the RF operation 
engine as the input. And the output would indicate whether 
the center residue   of the query peptide is a 
“hydroxylation site” or “non-hydroxylation site”.  Note 
that, in using the current prediction method, one must 
observe the self-consistency principle: if the center residue 
of a query peptide is P,=  then the corresponding 
training data must be taken from ( )10 P ;ξ=  if the center 
residue of a query peptide is K,=  then the training data 
must be taken from ( )10 Kξ= .  

The predictor established via the above procedures 
is called “iHyd-PseCp”, where “i” stands for “identify”, 
“Hyd” for “hydroxylation site”, “Pse” for “general 
PseAAC”, and “Cp” for “sequence coupled effect”. 

As pointed out in the Introduction section, one of the 
keys in establishing a useful predictor is how to properly 
evaluate its anticipated success rates. To realize this, we 
need to consider the following two things: one is what 
metrics or scales should be used to quantitatively measure 
its prediction quality; the other is what validation method 
should be adopted to calculate or derive the metrics values. 
Below, let us address the two problems.

A set of four metrics

The following four metrics are usually used in 
literature to measure the quality of binary classification: 
(1) overall accuracy or Acc; (2) Mathew’s correlation 
coefficient or MCC; (3) sensitivity or Sn; and (4) 
specificity or Sp (see, e.g., [95]). Unfortunately, the 
conventional formulations for the four are not intuitive 
and that most experimental scientists feel difficult to 
understand them, particularly for the one of MCC. 
Interestingly, by using the Chou’s symbols and derivation 
in studying signal peptides [96], the aforementioned four 
metrics can be easily converted into a set of following 
equations [97, 98]:
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where N +  represents the total number of hydroxylation 
sites investigated whereas N +

−  the number of true 
hydroxylation sites incorrectly predicted to be of non- 
hydroxylation site; N −  the total number of the non- 
hydroxylation sites investigated whereas N −

+
 the number 

of non- hydroxylation sites incorrectly predicted to be of 
hydroxylation site.

According to Eq.9, it is crystal clear to see the 
following. When 0N +

− =  meaning none of the true 
hydroxylation sites are incorrectly predicted to be of non- 
hydroxylation site, we have the sensitivity Sn 1= . When 
N N+ +

− =  meaning that all the hydroxylation sites are 
incorrectly predicted to be of non- hydroxylation site, we 
have the sensitivity Sn 0= . Likewise, when 0N −

+ =  
meaning none of the non-hydroxylation sites are 
incorrectly predicted to be of hydroxylation site, we have 
the specificity Sp 1= ; whereas N N− −

+ =  meaning that all 
the non- hydroxylation sites are incorrectly predicted to be 
of hydroxylation sites, we have the specificity Sp 0= . 
When 0N N+ −

− += =  meaning that none of hydroxylation 
sites in the positive dataset and none of the non- 
hydroxylation sites in the negative dataset are incorrectly 
predicted, we have the overall accuracy Acc 1=  and 
MCC 1= ; when N N+ +

− =  and N N− −
+ =  meaning that all 

the hydroxylation sites in the positive dataset and all the 
non-hydroxylation sites in the negative dataset are 
incorrectly predicted, we have the overall accuracy 
Acc 0=  and MCC 1= − ; whereas when / 2N N+ +

− =  and 
/ 2N N− −

+ =  we have Acc 0.5=  and MCC 0=  meaning 
no better than random guess. Therefore, using Eq.9 has 
made the meanings of sensitivity, specificity, overall 
accuracy, and Mathew’s correlation coefficient much more 
intuitive and easier-to-understand, particularly for the 
meaning of MCC, as concurred recently by many 
investigators (see, e.g., [11, 12, 16, 18, 19, 21–23, 64, 65, 
99–108]).

Note that, however, the set of equations defined 
in Eq.9 is valid only for the single-label systems. For 
the multi-label systems whose emergence has become 
more frequent in system biology [109–111] and system 
medicine [112], a completely different set of metrics are 
needed as elaborated in [113].

Jackknife test

With a set of well-defined metrics to measuring 
the quality of a predictor, the next thing is what kind of 
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validation method should be used to score these metrics. 
In predictive analytics, the following three cross-validation 
methods are often used: (1) independent dataset test, (2) 
subsampling (or K-fold cross-validation) test, and (3) 
jackknife test [114]. Of these three, however, the jackknife 
test is deemed the least arbitrary that can always yield a 
unique outcome for a given benchmark dataset as elucidated 
in [7]. Accordingly, the jackknife test has been widely 
recognized and increasingly used by investigators to 
examine the quality of various predictors (see, e.g., [73–76, 
78–80, 115–123]).  Therefore, the jackknife test was also 
adopted in this study to score the metrics of Eq.9. In the 
jackknife test, each of the samples in the benchmark dataset 
is singled out one-by-one and tested by the predictor trained 
with the remaining samples. During the jackknifing process, 
both the training dataset and testing dataset are literally 
open, and each sample is in turn moved between the two. 
The jackknife test can exclude the “memory” effect; it 
can also avoid the arbitrariness problem occurring in the 
independent dataset test and subsampling test as pointed out 
in [7] because the outcome obtained by the jackknife test is 
always unique for a given benchmark dataset. 

CONCLUSIONS

The iHyd-PseCp predictor is a new bioinformatics tool 
for identifying the hydroxylation sites in proteins. Compared 
with the existing state-of-the-art predictor in this area, its 
prediction quality is much better, with remarkably higher 
overall accuracy and stability. For the convenience of most 
experimental scientists, we have provided its web-server and 
a step-by-step guide, by which users can easily obtain their 
desired results without the need to go through the detailed 
mathematics. The reason of including them in this paper 
is for the integrity of the new prediction method, and that 
these techniques, such as incorporating the sequence-coupled 
approach into the general PseAAC, may be of use as well in 
developing other tools in computational biology.  

We anticipate that iHyd-PseCp will become a very 
useful high throughput tool for both basic research and 
drug development in the areas relevant to the protein 
hydroxylation. 
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